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A central open question in the machine learning explainability/interpretability literature is the extent to which restricting consideration
to interpretable models decreases classification accuracy. This has so far proven difficult to evaluate rigorously. The question depends
on too many assumptions about the empirical context and the user’s subjective state of mind. In this paper, we reframe the problem in
a more tractable way. We focus on cases where a human decision-maker must collaborate with a machine and we evaluate the effect
of a model’s opacity on the team’s collaborative performance. We first explain methodologically under what conditions the team
performance benefits from a transparent collaboration, and we then demonstrate how interpretability improves team performance in
practice, using an experiment on a synthetic classification problem.
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1 INTRODUCTION

A common suggestion (and sometimes assumption) in the literature on interpretable machine learning is that there
may be a trade-off between the interpretability of a model and its classification accuracy [1]. The extent to which an
accuracy/interpretability trade-off (“AIT”) exists is in many respects the million-dollar question in interpretable ML.
But this relationship is hard to prove (or disprove) because interpretability eludes a rigorous mathematical definition
[2]. Indeed, systematic discussions of the AIT are thus far largely based on empirical observations in specific contexts
where accuracy seems to suffer with more interpretable models [3–5].

Meanwhile, some recent work demonstrates that high stand-alone ML classification accuracy – in the sense of high
specificity and sensitivity, for instance – does not always translate into better real-life performance when humans are
part of the ultimate decision procedure [1, 6–8]. This is partly because humans can be fallible and biased, thereby failing
to appropriately incorporate a probabilistic prediction into their subjective beliefs [9, 10]. Yet given the importance of
human-ML collaboration, especially in medical and criminal justice applications, it is particularly valuable to examine
ML performance in collaborative settings.

As a result of these two observations – (1) the difficulty of evaluating AIT in the abstract and (2) the importance of
human-ML collaboration – in this paper we reframe the problem into one that is both particularly salient to real-life
ML applications and which can be addressed rigorously. Instead of asking: “Does accuracy suffer when we restrict our
consideration to interpretable models only?” we are going to ask: “When is it more effective to present the human with
a more interpretable, but potentially less accurate model?”

By framing the problem in terms of human-ML collaboration, we can explore and quantify the general cost of
misinterpretation while avoiding the need to provide a universal definition of what makes a model interpretable. In
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particular, we demonstrate that the AIT is not as simple as the widely accepted negative relation between interpretability
and accuracy. A more delicate trade-off emerges instead: between the stand-alone performance advantage of a black-box
ML and the collaborative performance loss as a result of misinterpretation by the human decision-maker.

This paper proceeds as follows. In Section 2, we discuss some background literature relevant to the AIT. In Section 3,
we describe our general framework and formalize it in a classification setting. In Section 4, we mathematically develop
a notion of misinterpretation and its associated accuracy cost. This section contains the construction of our complete
formal framework and in it, we demonstrate the more subtle relationship between interpretability and accuracy that
emerges in a collaborative setting. In section 5, we illustrate this relationship using an experiment on a synthetic dataset.

2 BACKGROUND

There is substantial interest in interpretable machine learning. In scenarios with overarching concerns of justice, for
example, such as recidivism risk prediction [11–13], welfare need assessments [14], or medical resource allocation
[15, 16], understanding the algorithmic output becomes essential for trust and accountability [17, 18]. Model transparency
is also instrumental to the effective implementation of ML systems in medicine, where their performance can depend
on how health care professionals actually use them [1, 19]. This prompts a natural question, which is whether and to
what extent there exists a trade-off between models which are easy to understand and models which perform best.

However, a major challenge in evaluating the AIT is the difficulty in precisely articulating what makes a model
interpretable. Like art or beauty, interpretability is at least in part in the eye of the beholder. On one extreme, we find
canonical black-box algorithms such as a convolutional neural network. On the other extreme, we find the simplest
white-box algorithms such as short decision trees and perhaps linear models. For the many models in between these
extremes, whether and to what extent they are interpretable would be an open question. As a result, there is little
consensus on whether such a trade-off exists, in part because it is hard to agree on what we are trading off in the first
place.

Nonetheless, there are principled reasons to doubt the existence of the AIT in many contexts, however, one construes
interpretability. In [20], Cynthia Rudin explores many areas where there is no apparent advantage to using black-box
models. For example, a three-rule model obtained by the Certifiably Optimal Rule Lists (CORELS) algorithm (which
is surely interpretable) attains approximately the same accuracy as the well-known proprietary COMPAS recidivism
model on the Broward County, Florida data [21]. Rudin argues more generally, using a Rashomon-set strategy, that
when a problem allows the same level of accuracy to be attained by a large collection of models, there is likely one
which is interpretable. Though finding such a simultaneously accurate and interpretable model is challenging, the
observed negative relation between accuracy and interpretability (e.g., as in [5]) could be due to us not having found
such a model, rather than it not existing.

But there are also principled reasons to believe that the AIT would hold in general. For example, increasing complexity
gives a model more power and more flexibility to approximate highly non-linear feature-label relationships. Indeed, it is
well-known that any Borel-measurable function on a finite-dimensional feature space can be approximated arbitrarily
accurately by a neural network with only a single hidden layer, given a sufficiently large number of neurons [22]. In
[23], the authors propose a formal framework in which instead of trying to define interpretability, we evaluate how
the act of enforcing interpretability affects performance. Enforcing interpretability (however one defines it) effectively
forces us to work with a smaller set of classifiers, and as a result, we may end up with a worse classifier than the one we
would use without such a restriction. In their setting, we consider a collection of admissible classifiers, where admissible
just means “in consideration", since it would be impossible and impractical to work with all classifiers. Interpretable
Manuscript submitted to ACM
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classifiers then constitute a subset. By using the empirical risk minimizer over the subset of interpretable classifiers, one
would end up with a worse classifier than if one were to use the empirical risk minimizer over the set of all admissible
classifiers – when the Vapnik–Chervonenkis (VC) dimension of the collection of admissible classifiers is finite and when
the number of training examples goes to infinity.

While this approach is insightful, the result is not unique to interpretability constraints. It could be applied to any
type of restriction on the classifier that is expressible in terms of complexity since any such requirement would result
in optimization over a smaller subset of admissible classifiers. In this paper, we suggest a different formal reframing –
focusing on how misinterpretation affects collaborative performance. While it is true that we too will not “solve” the
AIT problem, full stop, we believe our reframing sheds further light on the accuracy-interpretability relationship from a
different direction.

3 TEAM PERFORMANCE AND CLASSIFICATION ACCURACY

A model’s performance can be evaluated both independently and as part of a human-ML collaboration. For example,
an ML-based medical device for detecting diabetic retinopathy (IDx-DR) was recently cleared by the US Food and
Drug Administration (FDA) through its De Novo pathway for diagnostic use by clinicians primarily on the basis of its
specificity and sensitivity as a stand-alone diagnostic tool [24, 25]. In the context of IDx-DR, this setting is reasonable
because the tool is designed to help non-specialists identify high-risk patients and refer them to ophthalmologists if
necessary. Hence, humans are not intended to play a substantial role in the classification decision.

Meanwhile, OsteoDetect is another medical device recently cleared by the FDA for identifying, locating, and
annotating wrist fractures on X-ray images [26]. Unlike IDx-DR, OsteoDetect is designed to be a collaborative tool
– where the clinician (a specialist) would base her diagnosis concurrently on the annotated and unannotated X-ray
images. In this case, FDA clearance involved both stand-alone performance testing and an assessment of how clinicians
perform with and without the aid of OsteoDetect. And what we see in the OsteoDetect case is likely true in many
if not most real-life settings, from ophthalmology and radiology to recidivism and lending: the model’s stand-alone
performance is at best a partial guide of how it will fare in real-world conditions, because what really matters is how
the human makes use of its outputs. In the case of OsteoDetect both stand-alone and collaborative performances were
reasonably strong, but this is not always the case [6]. Accordingly, we develop a framework to evaluate a model not as
a stand-alone product, but as part of the whole system within which it operates, taking our motivation from the policy
perspective expressed in [19].

LetY be the space of labels and X be a measurable space of features. We have a probability distribution on the labels,
P𝑌 , and conditioned on each label 𝑦 ∈ Y, we have a probability distribution P𝑋 |𝑌=𝑦 on X. Together P𝑌 and P𝑋 |𝑌=𝑦
define the true feature-label joint distribution P on X ×Y. The feature distribution is given by P𝑋 =

∫
Y P𝑋 |𝑌=𝑦 𝑑P𝑌 (𝑦).

We define an agent(s) (this could be a machine or a human) to be a function C : X → I where I is the space of
suggestions. For example, in the case when a doctor is using OsteoDetect to diagnose fractures, I would be the space of
all annotated X-ray images. In the special case when I = Y𝑘 for some 𝑘 ∈ N andY is a finite label space, we also think
I intuitively like a “space of votes". A function 𝑝 : I → Y is called a collaboration process.

To further motivate and illustrate this conceptual framing, consider a real-life example: the radiological double
reading task on diagnosing knee lesions (as in [27]). Let X be the feature space of MRI images. Let 𝐶1, ...,𝐶𝑘 be a
collection of radiologists and ML readers, which are maps from X → I𝑖 := {0, 1} (0 indicates there is no knee lesion,
and 1 indicates there is a knee lesion). The process, 𝑝 , could then be to decide whether or not a knee lesion exists on the
basis of a majority vote. In this case, 𝐶 = 𝐶1 ×𝐶2 × ... ×𝐶𝑘 and I = X𝑘 is the space of votes. See Figure 1, right-panel.
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Fig. 1. A group of 𝑛 classifiers using collaboration process 𝑝 (left), and a group of 𝑛 readers of MRI output for knee lesion diagnoses,
collaborating via majority rule (right).

Given a classifier 𝑓 : X → Y, its accuracy is given by

A(𝑓 ) :=
∫
𝑦∈Y
P𝑋 |𝑌=𝑦 (𝑓 (𝑥) = 𝑦) 𝑑P𝑌 (𝑦) .

The optimal collaboration process for agent 𝐶 is the accuracy maximizer

𝑝∗ := argmax
𝑝

A(𝑝 ◦𝐶) .

Now we will illustrate how the choice of process 𝑝 can affect the team’s accuracy, A(𝑝 ◦ 𝐶), in a way that can
come apart from the classifiers’ stand-alone performance. A simple but instructive example is the well-known XOR
separation problem. XOR is a logical operator which represents exclusive disjunction (exclusive "or"), meaning that
a statement of the form "A xor B" is true if and only if either only A is true or only B is true, and false otherwise.
The XOR logical operator can be depicted graphically as a two-dimensional classification problem where the feature
distribution takes on values (±1,±1), and each observation is labelled 0 if the two coordinates are equal – i.e., the
feature values are (−1,−1) or (1, 1) – and 1 if the coordinates are not equal – i.e., the feature values are (−1, 1) or (1,−1).
This classification problem is depicted in Figure 2.

Fig. 2. The XOR separation problem. Formally, let X = R2, Y = {0, 1} (0 is black, 1 for white), and P𝑌 = Unif{0, 1}, P𝑋 |𝑌=0 =

Unif{(1, 1), (−1,−1) }, P𝑋 |𝑌=1 = Unif{(1,−1), (−1, 1) }.

Consider Team 1, consisting of linear classifiers 𝐶1 (𝑥1, 𝑦1) = 𝐼 {𝑦2<0} (where 𝐼𝐴 denotes the indicator function of
set 𝐴) and 𝐶2 (𝑥1, 𝑥2) = 𝐼 {𝑥1⩾0} . 𝐶1 (resp. 𝐶2) classifies the upper (resp. left) half-plane as 0 and the lower (resp. right)
half-plane as 1. Meanwhile, Team 2 consists of 𝐶 ′

1 (𝑥1, 𝑥2) = 𝐼 {𝑥2<𝑥1−1} and 𝐶 ′
2 (𝑥1, 𝑥2) = 𝐼 {𝑥2⩾−𝑥1−1} , which draw
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diagonal classification boundaries with one half-space containing 3 points and the other half-space containing 1 point.
See Figure 3.

Fig. 3. From left to right: classification partitions of𝐶1,𝐶2,𝐶
′
1,𝐶

′
2. As can be seen from the plots, they achieve classification accuracies

of 0.5, 0.5, 0.75, and 0.75, respectively.

The optimal process for Team 1 is the function 𝑝∗ (0, 0) = 𝑝∗ (1, 1) = 1, 𝑝∗ (0, 1) = 𝑝∗ (1, 0) = 0, i.e. 𝑝∗ (𝑥1, 𝑥2) =

𝐼 {𝑥1=𝑥2 } . The optimal process for Team 2 is the function 𝑝 ′∗ (0, 0) = 0 and 𝑝 ′∗ (0, 1) = 𝑝 ′∗ (1, 0) = 𝑝 ′∗ (1, 1) = 1, i.e.
𝑝 ′∗ (𝑥1, 𝑥2) = 1 − 𝐼 (0,0) . See Figure 4.

Fig. 4. The optimal collaborative classifier of Team 1 and Team 2: 𝑝∗ (𝐶1,𝐶2) and 𝑝′∗ (𝐶′
1,𝐶

′
2) , respectively. They achieve classification

accuracy of 1 and 0.75, respectively.

Here is the lesson from this illustration: Team 1 is individually dominated by Team 2 because each player from
Team 1 is weaker than every player from Team 2. For Team 1, both 𝐶1 and 𝐶2 have a classification accuracy of 0.5 each,
whereas, for Team 2, both 𝐶 ′

1 and 𝐶
′
2 have a classification accuracy of 0.75 each.

However, under optimal collaboration process, 𝑝∗ (𝐶1,𝐶2), the two players from Team 1 working together achieve
perfect accuracy. Meanwhile, and perhaps even more counter-intuitively, the two players from Team 2 working together,
even under optimal collaboration process, still cannot achieve perfect classification accuracy! In this example, then, two
individually stronger players cannot outperform two individually weaker players even under ideal conditions. Hence,
we see how the collaboration process 𝑝 can have counter-intuitively substantial effects on performance.

This captures, in some respects, Russian chess legend Garry Kasparov’s well-known remark that a weak human
working with a computer under a good process could outperform both a strong computer alone and, surprisingly, a
strong human with a computer under a bad process [28].

4 INACCURACY AND IMPRECISE INTERPRETATION

The preceding example is an idealization in the sense that we can determine objectively what the optimal collaboration
process is. Let us call the person (or machine) who comes up with the collaboration process the curator. In real-life
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cases, unlike in the XOR separation problem, we do not have an omniscient curator. For example, the curator might not
have full knowledge of the agent(s), i.e., of𝐶 . Rather, we have a fallible curator who must use an agent’s output in order
to make a final decision. In such cases, the curator might come up with a sub-optimal collaboration process, and the
quality of that process depends on the extent to which they understand, or can interpret, the agent’s output.

From a statistical perspective, it should not be too surprising that the human’s understanding of the machine’s
partition of the feature space should improve collaborative classification accuracy because research in expert forecast
aggregation demonstrates that combining total information/evidence, or full distributions, is generally much more
effective than averaging point estimates alone [29]. And a human who understands the machine will be better able
to infer its underlying information/evidence for a particular classification outcome. In this sense, we can think about
our contribution to this paper as a development of the literature on forecast aggregation in the area of human-ML
collaboration.

4.1 Two Conditions of Interpretability

First, without defining interpretability, we think it is fair to say that whatever interpretability requires, it is surely a
concept that depends on both the agent being interpreted and the curator making the interpretation. For example,
a sentence like “this ML model is interpretable", would leave the reader wondering, “interpretable by whom?". By
comparison, a sentence like “this ML model is interpretable by Dr. Stephen Strange" sounds more natural. Consider the
following hypothetical. Suppose that two doctors, Peter and Jocelyn, are equally good at detecting tumors from reading
MRI images. They work in the same hospital, and tend to get very competitive against one another. So when the hospital
introduces an ML reader tool to assist in the interpretation of MRI images, Peter applies some under-the-table sleight of
hand to obtain the secret proprietary information about how the tool works which, it turns out, is a set of cleverly
designed, yet flawed, simple decision rules. When the two doctors begin to actually use the ML tool, it is thereby much
more interpretable to Peter than it is to Jocelyn. Even though it is the same tool, Peter has knowledge that Jocelyn
lacks. Likewise, we can imagine a simple tool, such as a linear classification model, being used by a statistician, and a
person with nearly zero mathematical knowledge. Again it is the same tool, but the statistician will find it more readily
interpretable.

Secondly, and again without fully defining interpretability, we make another hopefully uncontroversial observation
about this concept: Perfect interpretability is effectively equivalent to perfect replication. We will refer to this as the
Principle of Replication. We understand that this principle might be a little bit more objectionable than the previous
one, but we think it is a natural, one might say behaviorist, understanding of interpretability. It essentially states that if
an ML model 𝐶 is perfectly interpretable to Dr. Stephen Strange, then Dr. Stephen Strange, given any feature 𝑥 , can
perfectly replicate the output 𝐶 (𝑥) of the ML model. Conversely, if Dr. Stephen Strange can perform perfect replication
of 𝐶 , then we must grant him that his interpretation of 𝐶 is perfect. In a similar vein, Cynthia Rudin points out that
if one ML model is a globally faithful approximation of another, then it is effectively the same model [20]. The point
of this condition is to avoid getting too bogged down in mentalistic properties of interpretation – that is, to avoid
objections such as: how can we ever know that someone truly understands a model, regardless of how they behave?
Our view is that if Dr. Stephen Strange can perfectly replicate the model, then for our purposes in this project at least,
the model is interpretable to Dr. Stephen Strange.

Imperfect replication is hence a result of imperfect interpretability. Therefore, we will evaluate the effect of imperfect
replication on the quality of the collaboration process which is set by the curator. We do this in order to avoid having to
stipulate a full definition of interpretability, which is surely bound to be controversial.
Manuscript submitted to ACM
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4.2 The Formal Framework

Now we will formalize the above concepts. Let 𝜔 ∈ Ω be a measurable space, equipped with probability distribution PΩ
that represents the source of all relevant noise – which could consist of mental or systemic factors such as the curator’s
own biases or the irreducible randomness involved in the underlying algorithm. We assume that PΩ is independent of
the feature-label joint distribution. The curator’s interpretation is a replica of agent 𝐶 , denoted by 𝐶 : Ω × X → I. In
words, it is what the curator thinks 𝐶 is. The noisiness/uncertainty of the curator’s interpretation is modelled by 𝐶’s
dependence on the noise space Ω. For ease of notation, we denote 𝐶𝜔 (𝑥) = 𝐶 (𝜔, 𝑥). See Figure 5.

X 𝐶 I 𝑝 Y

Ω

𝐶

Fig. 5. 𝐶 is the actual agent, and𝐶 is what the human curator assumes it is.𝐶 might depend on the curator’s mental state represented
by space Ω. 𝑝 is the collaboration process.

We can measure how far away 𝐶 and 𝐶 are from each other through a fidelity function 𝛾 : I × I → R. For
example, 𝛾 could be the (𝐿2 distance)−1, or the indicator 𝛾 (𝑎, 𝑏) = 𝐼 (𝑎=𝑏) . While there is no “right” choice of a
fidenlity function, in this project we will use what we call 𝛾-fidelity between 𝐶 and 𝐶 , which is given by 𝑓 𝑖𝑑𝛾 :=
𝑓 𝑖𝑑𝛾 (𝐶,𝐶) := EΩE𝑋𝛾 (𝐶 (𝑥),𝐶𝜔 (𝑥)). This is therefore an assessment of how good the curator’s interpretation is. Of
course, calculating 𝑓 𝑖𝑑𝛾 is impossible in most real-life situations, and we propose the empirical estimate by the sample
mean 𝑓 𝑖𝑑𝛾 = 1

𝑛

∑𝑛
𝑖=1 𝛾 (𝐶 (𝑥𝑖 ),𝐶𝜔𝑖

(𝑥𝑖 )) where 𝑥𝑖 , 𝜔𝑖 are iid samples from P𝑋 and PΩ – which we refer to as the empirical

𝛾-fidelity of the curator’s interpretation.
There are two ways for the curator to misinterpret the machine’s output (see Figure 6, below). First, the curator’s

interpretation can be inaccurate. In this context, inaccuracy means that the curator’s understanding of where the
machine’s classification boundary lies is different from where it actually lies. Second, the curator’s interpretation
can be imprecise. By imprecision, we mean that the curator’s estimate of the classification boundary is noisy. We
can measure the accuracy of interpretation (with respect to fidelity function 𝛾 ) by E𝑋𝛾 (𝐶 (𝑥),EΩ𝐶𝜔 (𝑥)); and we can
measure imprecision by the expected noise-induced variance E𝑋𝑉𝑎𝑟Ω𝛾 (𝐶 (𝑥),𝐶𝜔 (𝑥)).
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Fig. 6. Inaccurate interpretation (left) and imprecise interpretation (right).

Based on the potentially flawed interpretation 𝐶 , the best possible process that the agent could employ is the
subjectively optimal process:

𝑝
∗,𝑠𝑢𝑏 𝑗
𝜔 := argmax

𝑝
A(𝑝 ◦𝐶𝜔 ).

Trivially, the subjectively optimal process is sub-optimal. For each 𝜔 ∈ Ω,

A(𝑝∗,𝑠𝑢𝑏 𝑗𝜔 ◦𝐶) ⩽ max
𝑝

A(𝑝 ◦𝐶) = A(𝑝∗ ◦𝐶) . (1)

Now, we would like to consider the performance deficit caused by imperfect replication (resulting from imperfect
interpretation), namely the interpretation error given by 𝐼𝐸 := EΩ [A(𝑝∗ ◦𝐶) − A(𝑝∗,𝑠𝑢𝑏 𝑗𝜔 ◦𝐶)]. One should expect
this quantity to be negatively related to 𝛾-fidelity. Unfortunately for us, such 𝑝∗, 𝑝∗,𝑠𝑢𝑏 𝑗 may not always exist when
I × Y is not finite. Even in the finite case, the computational complexity of finding 𝑝∗, 𝑝∗,𝑠𝑢𝑏 𝑗 by checking all possible
mappings is of order |Y| |I | , which is computationally infeasible even in simple cases. This is, however, not an issue.
In some sense, most machine learning techniques would be useless if we could simply obtain the best classifier by
checking all possibilities. Rather, we introduce the notion of a collaboration protocol. Whereas the collaboration process

is a function from I to Y, a collaboration protocol is the procedure by which the curator obtains that process function.
More precisely, a collaboration protocol is a function 𝜋 : Ω × C → P, where C is the set of all possible agents and

P the set of all possible collaboration processes, given X,I,Y. We will denote 𝜋𝜔 (𝐶) as 𝜋 (𝜔,𝐶). The collaboration
protocol has an element of noise inherited from Ω. For instance, 𝜋 could be constant in a majority rule process, or 𝜋
could be fitting a decision tree – which would introduce an independent layer of randomness. 𝑝∗, 𝑝∗,𝑠𝑢𝑏 𝑗 corresponds
to the case where 𝜋 is the protocol which selects the optimal and subjectively optimal classifier.

Given a collaboration protocol 𝜋 , we denote the 𝜋-chosen process as 𝑝𝜋𝜔 = 𝜋 (𝜔,𝐶) and the subjective 𝜋-chosen process
as 𝑝𝜋,𝑠𝑢𝑏 𝑗𝜔 = 𝜋 (𝜔,𝐶𝜔 ). As a replacement for 𝐼𝐸 (𝜔) := A(𝑝∗ ◦ 𝐶) − A(𝑝∗,𝑠𝑢𝑏 𝑗𝜔 ◦ 𝐶) we consider the 𝜋-interpretation
error ,

𝐼𝐸𝜋 := EΩ [A(𝑝𝜋 ◦𝐶) − A(𝑝𝜋,𝑠𝑢𝑏 𝑗𝜔 ◦𝐶)] .

Since population accuracy is mostly unobtainable in practical settings, we consider the empirical 𝜋-interpretation error

given by

𝐼𝐸𝜋 :=
1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑝𝜋 ◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ) −
1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑝𝜋,𝑠𝑢𝑏 𝑗𝜔𝑖
◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ),
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where 𝑥𝑖 , 𝑦𝑖 , 𝜔𝑖 are sampled from the feature-label-noise joint distribution.

4.3 The Ensuing System

In this subsection, we will bring together the formal concepts introduced above in order to describe our final model for
representing human-ML collaboration. To summarize, we have so far introduced the following: In a learning problem
with feature and label spacesX,Y and feature-label joint distribution P onX×Y, a system is a quintuple (I,Ω, PΩ, 𝛿, 𝜋)
where:

• I is a space of suggestions.
• (Ω, PΩ) is a noise space that is independent of the feature-label joint distribution.
• 𝛿 : Ω × C → C, is the interpretation map, where we denote 𝐶𝜔 = 𝛿 (𝜔,𝐶) for 𝐶 ∈ C and C is the space of all
agents from X to I.

• 𝜋 : Ω × C → P is the collaboration protocol, where P is the space of all collaboration processes from I to Y.
We denote the 𝜋-chosen process as 𝑝𝜋𝜔 = 𝜋 (𝜔,𝐶) and the subjective 𝜋-chosen process as 𝑝𝜋,𝑠𝑢𝑏 𝑗𝜔 = 𝜋 (𝜔,𝐶𝜔 ).

Given a fidelity function 𝛾 : I × I → R, with 𝑛 iid samples 𝑥𝑖 , 𝜔𝑖 from P𝑋 , PΩ respectively, the empirical 𝛾-fidelity is
defined by 𝑓 𝑖𝑑𝛾 (𝜔) = 1

𝑛

∑𝑛
𝑖=1 𝛾 (𝐶 (𝑥𝑖 ),𝐶𝜔𝑖

(𝑥𝑖 )). Given 𝑛 iid samples 𝑥𝑖 , 𝑦𝑖 , 𝜔𝑖 from the feature-label-noise distribution,
the empirical 𝜋-interpretation error is given by

𝐼𝐸𝜋 :=
1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑝𝜋 ◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ) −
1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑝𝜋,𝑠𝑢𝑏 𝑗𝜔𝑖
◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ).

Our perspective, therefore, sees interpretability through the lens of a system, thereby formalizing the system-view
idea first introduced in [19]. Within our framework, one’s assessment of the relationship between interpretability and
accuracy cannot be separated from the overall system within which the ML model is employed.

Furthermore, we can formalize the AIT problem as the study of the relationship between the fidelity of the curator’s
interpretation of the agent (measured in practice by 𝑓 𝑖𝑑𝛾 ) and the collaborative performance of the system (i.e.,
1
𝑛

∑𝑛
𝑖=1 𝐼 (𝑝

𝜋,𝑠𝑢𝑏 𝑗
𝜔𝑖

◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 )).
Our formal framework provides a unifying perspective of the exceedingly large interpretability and explainability

literature: whereas scholars interested in interpretability are concerned with the choice of agent 𝐶 (without changing
the interpretability map 𝛿), scholars who are interested in so-called post-hoc explainability are concerned with finding
a better interpretation map 𝛿 for a given choice of agent𝐶 . Regardless of the approach, the goal is to improve fidelity in
practice. See Figure 7 for a visual summary of our full formal model.
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Fig. 7. This diagram depicts our formal construction of a system, the computation of fidelity, and the computation of the interpretation
error.

5 EXPERIMENTAL RESULTS

In this section, we put the theoretical model to a test, and devise a synthetic experiment to examine the AIT under our
system-view framework. We first sketch the design of our computational experiment and then present our main results.
For the sake of readability, the granular details of the experiment are provided in the Appendix, and the full associated
code is available on GitHub [30].

While an ideal experiment would involve a large human factors study of many decision-makers and state of the art
ML models making judgments on the basis of large real world datasets, we start with something a little bit simpler but
nonetheless effective. We use a synthetic system that mimics this ideal as closely as possible, by creating a scenario
where the curator is a decision tree trying to interpret and collaborate with a collection of multi-layered perceptrons
(MLPs).

To begin, the following characterizes our learning problem under consideration: We start with a 10-dimensional
lattice {−1, 1}10 which consists of 210 lattice points. Half of the lattice points are assigned label 0 uniformly and at
random, while the rest are assigned label 1. We generate data from a uniform distribution in a small 10-dimensional
cube centered at each lattice point, inheriting the label of the center. To understand this setup, see Figure 8. This gives
us a binary classification problem with feature space X = R10 and label space Y = {0, 1}.
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Fig. 8. In the above diagram, uniform clusters are generated around each lattice point of the cube and they inherit the labels of the
lattice point. This is a visualization for a 3-dimensional cube, whereas our synthetic dataset is its 10-dimensional analogue.

5.1 Synthetic Experiment Design

To formally construct an agent, we train 𝑘 multi-layered perceptrons (MLPs),𝑀1, ..., 𝑀𝑘 , which are meant to play the
role of ML models, in this synthetic study, and we fit a decision tree𝑀𝑐𝑢𝑟 on the same task to play the role of a human
curator. The agent function is then the tuple 𝐶 = (𝑀1, ..., 𝑀𝑘 , 𝑀𝑐𝑢𝑟 ) and the suggestion space is given by I = {0, 1}𝑘+1.

To construct the interpretation map, we train a decision tree with exactly the same hyper-parameter as𝑀𝑐𝑢𝑟 to
learn from the ML model’s 𝑘-tuple (𝑀1, ..., 𝑀𝑘 ) (together) to obtain an interpretation ®𝑀𝑖𝑛𝑡,𝜔 with outputs in {0, 1}𝑘 . This
framing is similar to Geoffrey Hinton’s well-known knowledge distillation process, where the MLP 𝑘-tuple is the teacher
and the decision tree is the student [31]. The interpretation map is then given by 𝛿 : (𝑀1, ..., 𝑀𝑘 ) ↦→ ( ®𝑀𝑖𝑛𝑡,𝜔 , 𝑀𝑐𝑢𝑟 ). It
is constant on the last index because the classifier𝑀𝑐𝑢𝑟 is the curator. The 𝜔 captures the random noise involved in the
decision tree training algorithm.

The collaboration protocol is a decision tree with exactly the same hyper-parameter as the one used for 𝑀𝑐𝑢𝑟

and ®𝑀𝑖𝑛𝑡,𝜔 . This design is motivated by the idea that the same curator is making the interpretation as well as the
collaboration process. Together with ®𝑀𝑖𝑛𝑡,𝜔 , the randomness involved in the tree-fitting constitutes the noise space
(Ω, PΩ). Finally, as our fidelity function, we use 𝛾 ( ®𝑎, ®𝑏) = 1

𝑘+1
∑𝑘+1
𝑖=1 𝐼 (𝑎𝑖 = 𝑏𝑖 ). This corresponds to entry-wise

accuracy, measuring the percentage of agreement between two vectors, for ®𝑎, ®𝑏 ∈ I = {0, 1}𝑘+1.

5.2 Quantities Measured

Each iteration of the experiment consists of choosing a new labelling of the { −1, 1}10 lattice and regenerating the
uniform point clusters, then retraining the MLPs and the trees. From each iteration, we collect the following quantities:

• Fidelity: as previously defined, where we choose the fidelity function to be entry-wise accuracy.
• Collaboration Accuracy: which is given by 1

𝑛

∑𝑛
𝑖=1 𝐼 (𝑝

𝜋,𝑠𝑢𝑏 𝑗
𝜔𝑖

◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ), measuring how the system performs.
• Ideal Collaboration Accuracy: which is given by 1

𝑛

∑𝑛
𝑖=1 𝐼 (𝑝𝜋𝜔𝑖

◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ), measuring how the system would
perform had the curator’s interpretations been perfect.

• Interpretation Error:which is given by ideal collaboration accuracyminus the collaboration accuracy 1
𝑛

∑𝑛
𝑖=1 𝐼 (𝑝𝜋𝜔𝑖

◦
𝐶 (𝑥𝑖 ) = 𝑦𝑖 ) − 1

𝑛

∑𝑛
𝑖=1 𝐼 (𝑝

𝜋,𝑠𝑢𝑏 𝑗
𝜔𝑖

◦𝐶 (𝑥𝑖 ) = 𝑦𝑖 ).
• (True) Curator Improvement: which is given by collaboration accuracy minus the accuracy of𝑀𝑐𝑢𝑟 , measuring
how much the curator is able to improve with the help of the MLPs.
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• Ideal Curator Improvement:which is given by ideal collaboration accuracy minus the accuracy of𝑀𝑐𝑢𝑟 , measuring
how much the curator would have been able to improve from the help of the MLPs if his interpretation is perfect.

The entirety of the system is summarized in the diagram in Figure 9.

Fig. 9. This diagram outlines the system used for our synthetic experiment. The agent consists of 𝑘 MLPs and a prediction decision
tree. An interpretation decision tree is fitted to predict the tuple output of the 𝑘 MLPs which, together with the prediction tree, forms
the interpretation on which a collaboration process decision tree is fitted. From this system, we compute the empirical fidelity (as
entry-wise empirical accuracy), the collaborative accuracy, the ideal collaborative accuracy, and the interpretation error.

5.3 Results

We collected 50 data points, consisting of fidelity, collaboration accuracy, ideal collaboration accuracy, and interpretation
error, for each of 𝑘 = 4, 5, 6, 7, 8, 9, 10, 11, 12 – a total of 450 samples. These data points are pooled together for analysis.
We will present the data as dot plots, depicting fidelity against collaboration accuracy, ideal collaboration accuracy,
and interpretation error, respectively, and we compute the associated Pearson correlation coefficients. The results are
summarized in Figure 10, below. Following the figure, we describe the main takeaways from this exercise.
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Fig. 10. First three plots: dot plots displaying fidelity against ideal collaboration accuracy, collaboration accuracy, and interpretation
error, respectively. The last plot: dot plot displaying fidelity against (true) curator improvement and ideal curator improvement.

As expected, the ideal collaboration accuracy seems to have no relationship with fidelity, admitting a correlation
coefficient of about 0.0153, which is close to being completely uncorrelated. The collaboration accuracy, however,
bears a strong positive relationship with fidelity, admitting a correlation coefficient of about 0.720. Interpretation
error, on the other hand, bears a strong negative relationship with fidelity, admitting a correlation coefficient of about
−0.732. Correlation coefficients of this magnitude are typically considered to be quite strong. Our experimental result
demonstrates that when the ideal collaboration accuracy (which is to be thought of as the “raw power" of the agent)
does not vary with fidelity (which is to be thought of as the quality of the curator’s interpretation), interpretation
fidelity can have a strong positive effect on collaboration accuracy by lowering the interpretation error.

Moreover, by looking at the last dot plot in Figure 10, we can see that the curator’s performance gain through using
the MLP models’ input increases and approaches optimal accuracy with increasing fidelity. On the other hand, when
fidelity is relatively low, the curator benefits very little from collaborating with the MLP models. In fact, we have kept
track of the MLPs’ individual classification accuracies (namely, the individual accuracies of𝑀1, ..., 𝑀𝑘 ), and they almost
always unanimously outperform the curator’s tree,𝑀𝑐𝑢𝑟 . The lesson here is clear: without the interpretability of ML
models, we run the risk that the human decision-maker might benefit very little from their adaption in the intended
systems of use, even if these models all significantly outperform the human curator. This is precisely what we first
illustrated with our very simple XOR separation problem in Section 3. This result helps us to understand the recent
literature in explainable ML demonstrating that high stand-alone ML classification accuracy – in the sense of high
specificity and sensitivity, for instance – does not always translate into better real-life performance when humans are
part of the ultimate decision procedure [1, 6–8].
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6 CONCLUSION

The lesson of this project is short and simple, despite the apparent complexity of the preceding discussion: we have
explained – first theoretically, and second through a synthetic experiment – how a human-machine collaboration can
benefit from an ML model’s transparency. When an ML model is interpretable to a particular human decision maker,
then that human decision maker can do better, in terms of overall accuracy, than they could as compared to taking advice
from a model that is opaque to them. Somewhat surprisingly, this is true even when the opaque model is objectively
better (i.e., more accurate). In the current literature on machine learning, one often finds an uncritical enthusiasm
for the most elaborate state-of-the-art models, regardless of the underlying need for such complex algorithms. The
motivating idea, we suspect, is that developers assume more accuracy is always better. But our results should temper
such unbridled enthusiasm for overly complex models. Sometimes, as we have shown, less is more.

A APPENDIX

Synthetic Dataset Hyper-Parameters: Our synthetic dataset is constructed as uniform cube clusters around the 210

lattice points in the 10-dimensional lattice {−1, 1}10. Each uniform cube has a side length of 0.7. Half of the clusters are
uniformly randomly assigned label 1 and the rest label 0. For each iteration of the experiment, the lattice labels are
reassigned. In order to train our agent, interpretation, collaboration process, and lastly, testing, we need to synthetically
generate four datasets:

• Agent training dataset: This dataset consists of 30 points per cluster, which amounts to 30720 labeled training
data points for the MLPs,𝑀1, ..., 𝑀𝑘 and the tree𝑀𝑐𝑢𝑟 .

• Interpretation training dataset: This dataset consists of 10 points per cluster, which amounts to 10240 data points
for the interpretation decision tree to to fit the 𝑘-tuple of MLPs.

• Collaboration training dataset: This dataset consists of 10 points per cluster, which amounts to 10240 data points
for fitting the collaboration protocol, which is a decision tree.

• Testing dataset: The dataset we use for testing – computing fidelity and the relevant accuracies – consists of 20
points per cluster, which amounts to 20480 test data points.

MLP Hyper-Parameters: Each one of 𝑀1, ..., 𝑀𝑘 are MLPs with four fully connected layers, with respective in-
features-out-features pair of (10, 2048), (2048, 1024), (1024, 512), (512, 2), and ReLU activation. The output is generated
via the Softmax function. The MLPs are trained with a batch size of 10 for only 1 epoch and a flat learning rate of 0.1.
Our experiment required minimal hyperparameter tuning. The choice of hyper-parameters is quite arbitrary. The only
issue that concerned us was that we want to ensure that each MLP is trained to just above 80% accuracy. This would
ensure that it is non-trivially good at solving the problem, but also imperfect enough to allow room for improvement to
make the effects of interpretation and collaboration apparent.

Curator Decision Tree Hyper-Parameters: The curator decision trees are all trained using the entropy method
with max_tree_depth of 10 and min_samples_leaf parameter of 6. The choice of these hyper-parameters, just like for
the MLPs, is somewhat arbitrary. We wanted to ensure that (1) the classifier, interpretation and collaboration trees are
trained with the same hyper-parameters, since they are intended to model the learning of the same curator, and, again
(2) the classifier should achieve accuracy between 70% and 80%, so that it is sufficiently well-performing while allowing
room for improvement and being outperformed by the individual MLPs.

The full experiment that we have performed here can be reproduced using the code available at the GitHub repository
which we have made public (see [30]).
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