
Resolute and Correlated Bayesians

Boris Babic,∗† Anil Gaba,‡ Ilia Tsetlin,† and Robert L. Winkler§

August 16, 2024 Draft

Abstract

This paper suggests a new normative approach for combining beliefs. We
call it the evidence-first method. Instead of aggregating credences alone, as the
prevailing approaches, we focus instead on eliciting a group’s full probability
distribution on the basis of the evidence available to its members. This is an
altogether different way of combining beliefs. The method has four main bene-
fits: (1) it captures the weight, or resilience, of a group’s belief; (2) it is sensitive
to correlation among its individuals; (3) it is commutative under updating; and
(4) it can be seen as a generalization of weighted averaging and likelihood ratio
approaches. More broadly, it encourages an overall rethinking of the belief combi-
nation problem away from aggregating bare credences and toward appropriately
combining evidence.

1 Introduction

In this project we reframe the belief aggregation problem as an evidence combina-
tion problem. We explain that the focus on combining credences alone, as is the case in
prevailing approaches, ignores the individual evidential states giving rise to those cre-
dences. As a result, traditional approaches fail to capture the multitude of individual
evidential states which can lead to the same group credences. This occurs when we fail
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to account for dependence among individuals and the resilience of their beliefs. Such
omissions are not innocuous: they can underdetermine both the group belief and its
updating strategy.

We present an approach that allows one to focus instead on appropriately combining
evidence, and in particular taking into account any overlaps in information. Once the
evidence is properly captured, we will show, a full group distribution can be uniquely
established on its basis. From this distribution, we can derive point estimates, intervals,
and predictions. We call this the evidence-first method, in part to distinguish our
approach from prevailing rules for combining beliefs, which may more accurately be
described as credence-first.

To understand what we mean by this distinction – between combining evidence
and combining credences – consider an example: Ahmed has observed 100 coin tosses,
30 of which were heads. His estimate that the next toss will land on heads is 0.3.
Beatrice has observed 10 tosses, 3 of which were heads. Her estimate for heads on
the next toss is also 0.3. Ahmed and Beatrice have identical probability estimates but
very different information states, which we will characterize in terms of Joyce (2005)’s
notion of resilience. This is not a distinction without a difference: which evidential
state the probability is based on can have a profound effect on how the group responds
to and acts on new information. In the above example, ordinary averaging suggests a
group belief of 0.3, but it does not say whether this belief corresponds to 30/100 heads,
3/10 heads, or 33/110 heads. Each alternative would lead to very different updating
behavior. Matters become even more complicated when some of the tosses that form
the basis of Ahmed and Beatrice’s evidence were observed in common – i.e., when
their information is overlapping and their estimates are correlated – a situation that
is ubiquitous in real life (Lindley, 1983). Thus, when we seek to combine Ahmed and
Beatrice’s beliefs we need to know, first, the evidence they correspond to and, second,
the extent of its overlap. The prevailing approaches in the literature are not equipped
with the tools to answer these questions. The evidence-first method can answer them.

The paper proceeds as follows. In Section (2), we provide a brief background and
motivate the general project. In Section (3), we reframe the belief aggregation problem.
We explain that its usual formulation – combining a list of credence functions into a
group credence function – is underspecified. Without capturing the size or weight of
each member’s evidence – i.e., the resilience of their credences – the group belief fails to
take into account the full texture of information available to its members. In Section (4),
we develop the evidence-first method. While this gets a little bit technical, the basic idea
is very simple and intuitive: it is just a matter of properly accounting for everyone’s
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evidence – do not leave anything out, do not over count. Consider the Ahmed and
Beatrice example above. If they did not observe any tosses in common, then the group’s
evidence consists of 110 tosses, 33 of which were heads. If they observed some tosses
in common, we must appropriately subtract these. We then explain how the evidence,
together with each person’s prior, fixes a unique group distribution that captures the
probabilities (valence), their resilience (weight or sharpness) and the dependence among
individuals (correlation). In Section (5), we provide a fully worked example of our
approach. And in Section (6), we explain how this approach can be generalized to
provide normative guidance even in cases where we do not have full access to the
individuals’ underlying evidence.

2 Background

We are interested in how beliefs from multiple individuals ought to be combined
to form a group belief. This problem can manifest in several different ways. The first
and most literal is when we inquire into the opinions of a collective, taken as one agent
(List and Pettit, 2011). This may occur when the collective is the subject of reactive
attitudes like praise or blame (Strawson, 1962). For example, Amnesty International
may blame Shell for human rights abuses in Nigeria without necessarily singling out a
corrupt set of individuals to bear responsibility. A judge may decide that a corporation
entered into a contract even if no particular set of individuals explicitly thus intended.
Indeed, the legal notion of corporate personhood requires that we impute agency to
corporate entities. As Chief Justice Marshall states in a well-known case before the US
Supreme Court, “The great object of an incorporation is to bestow the character and
properties of individuality on a collective and changing body.”1

The second is when an individual needs to combine multiple sources of counsel or
advice. For instance, Alibaba co-founder Lucy Peng is deliberating whether to purchase
a small but promising venture. She solicits advice from three different domain experts
on whether the company will turn a profit in five years. After obtaining their estimates,
she must combine them into one prediction about profitability which represents her own
credence. And third is when a group must act. For example, Tesla’s board of directors
must decide whether to remove its founder Elon Musk as the company’s CEO. Before
they can make a decision, they need to combine their individual beliefs about the
wisdom of doing so.

The prevailing rules in the aggregation scholarship use measures of central tendency
to identify a group’s belief. Moss (2011) and Pettigrew (2019), for example, defend or-

1Providence Bank v. Billings, 29 U.S. 514 (1830).
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dinary averaging whereas Russell et al. (2015) and Dietrich (2019) champion geometric
averaging. Dietrich and List (2016) discuss the multiplicative rule, which is a special
case of the latter. We will explain how measures of central tendency can arise naturally
from considerations of evidential symmetry under our approach. However, depending
on the underlying evidential states, our approach may or may not coincide with any
form of averaging. Meanwhile, Easwaran et al. (2016) use the product of odds ratios,
which is somewhat closer to our approach.2 Indeed, we will explain that the rule they
develop is equivalent to our method under special circumstances (independent signals
and a uniform prior).3

While the prevailing aggregation methods in Bayesian epistemology largely focus on
measures of central tendency, there are some views closer to ours which can be found in
the logic of belief revision literature. For example, Williamson (2019) argues that the
group distribution should be the distribution which maximizes Shannon information
entropy subject to the constraints imposed by the evidence of each of the agents. Our
approach is in the spirit of Williamson’s, as we too start from the motivating idea that
the content which should be combined is the agents’ evidence.

However, Williamson does not explore situations of evidential overlap. In this
project, those are the most interesting situations, and the ones that we spend the
most time developing. When evidential bases are independent, aggregation is easier,
and even the prevailing averaging rules yield intuitive results. It is particularly in cases
of overlap where things get tricky, and our approach attempts to address them. In
that sense, one can think about our project as constructively building on Williamson
(2019)’s. However, we combine probability distributions in a different way – we do not
use maximum entropy methods. In that sense, our project is doing something different,
though in the same spirit.

When we consider cases of evidential overlap, the aggregation problem becomes
particularly interesting. Our approach requires that the individuals in the group can
share evidence with each other and determine which bits are overlapping and which
bits are not. For example, Williamson considers a case where we have two doctors
making a prognosis about a patient’s cancer, where one doctor has clinical evidence
and the other doctor has molecular evidence. This is a nice case for our project as well,

2Kinney (2020) moves away from averaging and uses stacking, which is a particular case of ensembles
from machine learning. This is a different spirit of aggregation, but it would be hard to apply in cases
where there is not much data or when, as often, the future is expected to be significantly different
from the past – i.e., where so-called concept drift occurs (Widmer and Kubat, 1996).

3Throughout this project, we use evidence, information, data, and signal interchangeably. In the
mathematical portions, it will be unambiguous what the evidence is.
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but it is arguably an easy case. Here the doctors can share their evidence and there
is no overlap. We can modify the example so that there is some shareable overlapping
evidence though. For example, perhaps both doctors physically examined the patient
(measuring their temperature, blood pressure, etc.). Both the original example and this
modification are ideal use cases for our model, because here the overlapping evidence
can be easily identified. However, imagine a cases where a forecaster must combine two
analysts’ predictions, without knowledge of the underlying evidence that the predictions
were based on. In this case, we cannot aggregate evidence since we do not know what
it is or the extent to which it overlaps among the analysts’ who made the predictions.
We consider this situation in Section 6 of the paper, and we explain that even though
in such cases our model cannot provide a recipe, so to speak, for combining credences,
it can be used as a normative benchmark for which combinations are reasonable and
which are not.

3 Group Credence is not Reducible to Valence

The argument in this section is straightforward. The prevailing combination rules
– those which rely on one type of averaging or another – fail to capture an important
aspect of the aggregation problem’s information structure: namely, the weight or mass
of the group members’ credences, which we call their resilience and define more carefully
below.

Let X : F → R be a random variable defined on an underlying σ-algebra (Ω,F , P ).
Let c(x) and C(x) be the individual and group credence functions for X. Then ordinary
and geometric averaging may be defined as follows.

Ordinary Averaging:

C(x) =
n∑

i=1

wici(x).

Geometric Averaging:

C(x) =
n∏

i=1

ci(x)
wi .

Simple (ordinary/geometric) averaging is obtained from (ordinary/geometric) averaging
by setting all weights wi = 1/n. The so-called multiplicative mean is obtained from the
geometric mean by setting wi = 1. Some authors also suggest normalizing the result, so
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that the group credence is given by the above equations multiplied by their normalizing
factor. All of these rules share the following important property:

Credence profile sufficiency. An individual’s list of probability assign-
ments, which Dietrich (2019) calls their credence profile, is a sufficient statis-
tic for summarizing their doxastic contribution to the group’s belief.

For example, suppose we are interested in identifying a group’s probability that the
next ball to be drawn from a certain urn will be white.4 The urn contains blue and
white balls in unknown proportion. Credence profile sufficiency says that what we need
from every individual is a list containing the probability that the next ball to be drawn
is white, and the probability that the next ball to be drawn is blue. Or, equivalently,
their point estimates of the proportion. For example, A’s list for (White, Blue) might
be (0.6, 0.4). We will argue that the credence profile is not enough for identifying
the group belief because there can be many group credences that map back to the
same credence profile depending on the underlying members’ evidence. This becomes
particularly clear when the group undergoes a learning experience, in which case the
group update is often underdetermined as well.

Joyce (2005), following Skyrms (1980), distinguishes between the valence, on the one
hand, and resilience (mass or weight), on the other, of a credence function. Valence,
Joyce says, “is a matter of which way, and how decisively, the relevant data points” (p.
159). Meanwhile, the “size or weight of the evidence has to do with how much relevant
information the data contains, irrespective of which way it points” (p. 159). We refer
to the latter as its resilience. And we refer to people with more/less resilient credence
functions as more/less resolute, for short.5

Just as a vector has a direction and a magnitude, so too does a credence have
a valence and a resilience. The valence refers to its direction, as an estimate of a
proposition’s truth value or an event’s likelihood of occurring. A credence of 0.9 that
it will rain has a strong valence in favor of rain. By defining a group’s credence as a
function of the credence profile – i.e., the list of individual credence functions – the

4We use ball-and-urn examples throughout. While these are not the most exciting, they are flexible,
the evidence is unambiguous (i.e., observed balls) and they allow us to neatly describe various group
learning scenarios. In Section (5), we use a more realistic example to illustrate our approach.

5For Joyce, resilience is to be understood in terms of the extent to which a person’s credences
change under new data. But resilience is not a purely diachronic concept – we will explain that it can
be captured from a time-slice centric perspective also, to borrow Moss (2015) and Hedden (2015)’s
expression.
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prevailing approaches essentially combine individual valences into a group valence. But
in doing so they neglect weight or resilience. This is an especially glaring omission when
combining credences where we want to pool every individual’s full contribution, which
may vary from person to person, depending on their level of expertise or background
information.

To characterize resilience, and harness it in support of a general model for combining
beliefs, as we do in Section (4), we first need to develop a basic language for describing
the magnitude of evidence reflected by one’s credence function. This is a dimension of
the person’s doxastic state that is not captured by the credence profile. Accordingly,
we will describe below a natural Bayesian approach for modeling exchangeable data
which will allow us to explain these ideas more clearly. While the next two subsections
may seem unduly technical, we spell things out carefully because doing so will allow us
to substantially simplify the core material in Sections (4)-(6).

3.1 Characterizing Resilience

Suppose again we have two people, Ahmed and Beatrice. They will each draw n
balls from an urn with replacement. The urn contains white and blue balls, with θ as
the unknown proportion of white balls. In a draw of n balls, let r be the number of
white balls and, hence, n− r the number of blue balls. Each person’s credences may be
about θ, or they may be about the probability that the next ball to be drawn will be
white or blue – i.e., predictions on X̃, where X̃ = 1 represents a white ball and X̃ = 0
represents a blue ball.

Predicting the next ball and estimating θ both correspond to different practical
problems. For example, in the context of Covid-19, a doctor might be interested in the
probability that the next patient she sees is positive (predicting the color of the next
ball) whereas a policymaker in her city may be more interested in the proportion of the
population that is positive (estimating θ). As long as one uses a proper scoring rule,
the Bayesian logic follows a similar structure for either task.

Accordingly, it is not enough to have a “credence” over the space of outcomes be-
cause there are many different distributions for θ which correspond to the same predic-
tions about which ball will be drawn. Thus, we first need to specify a full distribution for
θ. Once we have that, we can make point estimates, interval estimates, and predictions
about X̃.

In a draw of n balls from an urn that contains only white and blue balls, the data
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are generated according to a Bernoulli process with the following likelihood function:

f(r|θ, n) = θr(1− θ)n−r. (1)

Now we need to identify prior beliefs regarding θ. In the Bayesian approach, a good
candidate prior for θ when data is generated according to (1) is the so-called beta
distribution, because it is a very flexible distribution with two parameters, α ≥ 0 and
β ≥ 0, accommodating a wide variety of information states regarding a Bernoulli process
and it arises naturally in the context of modeling binary exchangeable data (Lindley
and Phillips, 1976). An early development of this model can be found in Johnson
(1924), It was later applied by Carnap (Carnap, 1950, 1952), in his construction of the
continuum of inductive methods, and by DeFinetti (De Finetti, 1937), in his refinement
of Laplace’s Rule of Succession.

Let π(θ) be the prior probability density for θ, where

π(θ) = f(θ|α, β) = 1

B(α, β)
θα−1(1− θ)β−1 (2)

is a beta density function with B(α, β) = Γ(α)Γ(β)/Γ(α + β) and Γ(n) = (n − 1)!.
The core of this distribution, its kernel, is given by θα−1(1− θ)β−1. The combinatorial
term in front is a normalizing constant. The mean of a beta distribution is given by
E[θ] = α/(α+ β). This will be an important quantity in the material to follow, as will
α and β. With the likelihood in (1) and the prior in (2), the posterior density for θ is

π(θ|r, n) = f(θ|α + r, β + n− r) ∝ θα+r−1(1− θ)β+n−r−1. (3)

The posterior distribution is of the same kernel form as the prior distribution. This is
because a beta distribution is conjugate to the Bernoulli process. This means that if
we start with a beta prior for θ, and update via Bayes’ Rule with data from a Bernoulli
process, our posterior will likewise be beta but with updated parameters.

Such a model lends itself to a very intuitive interpretation.6 The parameters of the
updated beta distribution (the posterior distribution) are given by the sum of α and
the number of white balls, r, together with the sum of β and the number of blue balls,
n− r. As a result, the parameters α and β can be interpreted as pseudo observations
or pseudo counts upon which the prior beliefs are based. For instance, to say that one
has a beta(2, 2) prior for the proportion θ of white balls in the urn is equivalent to
assuming that prior to making the actual draws, that person observed two balls of each
color.

6See also Babic et al. (2024) for a discussion of the beta Bernoulli model and its interpretation.
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Bayesian updating is very simple and intuitive within a beta-Bernoulli model. If we
start with a beta(7, 3) prior, and we observe 4 out of 10 white balls, our posterior for
θ would be beta(7+4, 3+6). A beta(1, 1) prior for θ is the uniform or flat prior. This
would also be the maximum entropy prior for a proportion.

If we want to formulate a credence about X̃ (the color of the next ball to be drawn),
we need the predictive distribution. Assuming that the draws are conditionally inde-
pendent given θ, this is given by:

P(X̃ = 1|r, n) =
∫ 1

0

P(X̃ = 1|θ)π(θ|r, n)dθ = E[θ|r, n] = α + r

α + β + n
. (4)

Huttegger (2017a,b) refers to this expression as the Generalized Rule of Succession and
shows that this form of the predictive probability follows from several modest assump-
tions about the structure of the data-generating process, in particular exchangeability,
which will be satisfied throughout. From a decision-theoretic perspective, the posterior
mean minimizes expected square error loss. The important point for us is that when
the problem is fully specified, each person will have a full distribution about θ. They
will then base their prediction on the mean of that distribution.

We can now put this model to its first use and capture the notion of resilience
for a credence function. Suppose A starts with a beta(1,1) prior and B starts with a
beta(10, 10) prior regarding θ, the proportion of white balls in the urn. They both
obtain equivalent non overlapping evidence: namely, each draws 10 balls, 6 of which
are white. Using (3), we can determine that their posteriors will become beta(7, 5)
and beta(16, 14), respectively. Using (4), we conclude that A’s probability that the
next ball to be drawn is white moves from 0.5 to 0.58 whereas B’s moves from 0.5 to
0.53. B is much more resolute in her prior, even though the actual credal value (the
valence) is the same among them. The resilience of a credence function for θ, therefore,
corresponds to the size of α and β.

Resilience. Let (α+β)A denote the size of the sum of α and β in A’s beta
distribution for θ. If (α+β)A > (α+β)B then A’s distribution for θ is more
resilient.

The higher (α + β) the more resolute the person will be about her credences. Keep in
mind that after we make observations, r contributes to our new α, n− r contributes to
our new β, and n contributes to α + β. As a result, the preceding definition captures
Joyce’s dictum that resilience corresponds to the weight of one’s data – i.e., to n.
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As the above example comparing a beta(1, 1) prior against a beta(10, 10) prior
illustrates, it is possible to have equal valence and unequal resilience. This is why
the credence profile sufficiency assumption is problematic. When we combine valences,
there are many degrees of resilience compatible with the ensuing group credence. Which
level of resilience we then impute to the group will later affect how it responds to new
evidence. As a result, credence is not reducible to valence. Without capturing resilience
we fail to specify every individual’s full quantification of uncertainty.

3.2 Synchronic Resilience

One might wonder whether the only way resilience reveals itself is under learning
experiences – diachronically, so to speak. This is not the case. We can illustrate the
difference between resolute and irresolute agents synchronically as well.

The point estimate for θ, θ̂, is the same as the predictive probability for a single
draw, P(X̃ = 1). But instead of just producing the value we think is most likely –
which we know to be false anyway, since θ is continuous – we can instead produce an
interval estimate for θ. In Bayesian inference, a (1 − γ)100% credible interval (a, b)
satisfies:

P(a < θ < b|r, n) =
∫ b

a

π(θ|r, n)dθ = 1− γ. (5)

Consider an example: A’s credences are beta(2, 2) whereas B’s credences are beta(100,
100). Both estimate the proportion of white balls to be 0.5, and both estimate that
the probability of the next ball being white is 0.5. Their probabilities (valences) are
identical, as are their predictions about the next ball. However, A’s 95% credible in-
terval is (0.1, 0.9) whereas B’s 95% credible interval is (0.43, 0.57). This is a dramatic
difference in uncertainty around the prediction. A is very open minded, whereas B is
quite dogmatic.

Indeed, diachronic and synchronic resilience are related. As α and β increase, the
variance of the distribution, given here by σ2 = αβ/((α+β)2(α+β+1)), decreases. This
is to be expected – intuitively, large n implies that it is hard to change the distribution
with extra information (diachronic), while small σ2 implies that the current estimate is
tight (synchronic). So when we increase α and β we tighten the variance. Therefore,
for a given mean (point estimate) by increasing α and β we ordinarily shrink the width
of the credible interval. This is easiest to illustrate if we approximate a beta prior with
a normal distribution,7 where intervals are symmetric. In this case, a 95% credible

7This approximation follows from the Central Limit Theorem and is reasonably accurate if α > 5
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interval simplifies to µ± 1.96σ, and in our example,

µ = α/(α + β), and

σ = (αβ/((α + β)2(α + β + 1)))1/2.

We can see that as α and β increase, then σ decreases and so for a given µ, the length
of the credible interval shrinks.

4 The Evidence-First Method

We now present the evidence-first method. In Section (4.1), we describe the ap-
proach informally when there is no shared evidence. In Section (4.2), we develop the
idea mathematically for the general case where evidence is overlapping. In Sections
(4.3)-(4.4), we show that in the special case with minimal overlapping evidence, we
recover the ordinary (weighted) averaging rule. And in the special case with a uniform
prior and no overlap, we recover the rule articulated in Easwaran et al. (2016), which
they call Upco (Section 4.5).

4.1 A Simple Example

Suppose we have an urn with blue and white balls in unknown proportion θ, and
two people, A and B, each of whom holds a uniform beta(1, 1) prior for θ. They each
draw 10 balls, independently, and observe 4 and 7 white balls, respectively, with no
overlap. What should the group distribution be?

First, since both A and B approach the problem with a uniform prior, the group
prior before any observations are made should be uniform as well.8 Second, and more
importantly, we have to make explicit the group’s shared evidence. We have 4+7=11
distinct white balls and 6+3=9 distinct blue balls, for a total of 20 balls. We can think
of the group as accomplishing a division of labor – assigning 10 draws for A to handle,
and 10 draws for B to handle. They each do their job and come back to combine the
evidence. The group distribution is therefore beta(12, 10). This is a full distribution
for the unknown proportion θ, from which we can derive any statistic of interest. For
instance, the group’s (posterior mean) point estimate for θ is 12/22 = 0.54. The median
is 0.55. The 95% credible interval is (0.34, 0.74). We now have a full representation of
the group’s uncertainty.

and β > 5.
8We explain and argue for this in more detail in Section (4.2), below. For now the exposition is

informal to motivate the reader’s intuition.
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By contrast, if we combine credences through simple ordinary averaging, for in-
stance, we might pool the two point estimates from A’s beta(5, 7) and B’s beta(8, 4)
distribution, which would be (0.41+0.66)/2 = 0.53. But notice that on ordinary averag-
ing approaches we do not have the full distribution, using instead only the probabilities
as described by the credence profile. As a result, it would be impossible to determine
whether person A’s 0.41 estimate came from a beta(5, 7) distribution, a beta(10, 14)
distribution, a beta(20, 28) distribution, or any other beta distribution which satisfies
α/(α + β) = 0.41. Because all of these distributions are compatible with the reported
probability, we also cannot say how the group should update if it makes additional
observations. For example, if its prior distribution is beta(5, 7) and it observes 2 white
balls it should move to beta(7,7) and a 0.5 estimate of θ. But if its prior distribution
is beta(20, 28) and it observes 2 white balls then it should move to beta(22,28) and
an estimate of 0.44 for θ. Likewise, the 95% credible interval in the beta(5, 7) case is
(0.17, 0.69) whereas in the beta(20, 28) case it is (0.28, 0.55).

Further, it is well known that ordinary averaging is not commutative with respect to
updating: updating and combining does not always give the same result as combining
then updating.9 Our approach, by comparison, does not have this problem, and we
establish and discuss this for the general case in Theorem 1 below. Indeed, it is easy to
see that this will be true because we are simply summing up the number of observations
in each category. Since addition is commutative, so too is the evidence-first method.

4.2 The Core Idea

The preceding examples are particularly easy to handle because each person receives
independent signals – no balls are observed together. But it is rarely the case that a
group of people approach a problem with mutually exclusive private information. When
some balls are observed in common, the key is to capture overlapping evidence appropri-
ately.10 This way, everyone contributes exactly their evidence, and only their evidence,
to the group belief. We now generalize the above idea and mathematically formulate
the evidence-first method. This model captures both dependence and resilience.

We use the case of two people and two categories for maximal simplicity. Extending
to n people and k categories is straightforward; but since the number of parameters
grows quickly, in both k and n, it risks burying our message in the details. In a

9Russell et al. (2015) (Fact 4), Dietrich (2019) (Theorem 2), and Pettigrew (2019) (Theorem 3).
10Clemen (1987) proposes a similar approach but we expand on this work in several directions:

by proving that the method is commutative under updating, by explaining when it is equivalent to
weighted averaging, and by connecting it to likelihoodist approaches in philosophy.
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problem with two categories (two colors of balls), for two people, we need to know six
quantities/parameters: the number of white balls each observed, the number of blue
balls each observed, and the number of each color of balls observed in common.

Suppose we have two people, i = 1, 2, who will estimate the probability p that the
next ball drawn from the urn will be white (label it as a success). Each person has her
own full subjective distribution over p, which is a beta distribution with parameters ri
and ni − ri:

πi(p) ∝ pri−1(1− p)ni−ri−1. (6)

Thus, for person i, the probability that the next ball will be white corresponds to
Ei[p] =

ri
ni
. Moreover, ni captures the notion of resilience described above – the larger

ni, the more resolute person i is that the probability is close to pi.

In order to combine these two people’s opinions/credences, we now need to model
their shared information structure – which must reflect the way each came to their
subjective probability distributions and any overlap in their evidence. Our model is as
follows: Every person starts with a beta prior with parameters α0 and β0. Typically,
these parameters will be small, like 0 ≤ α0 ≤ 1 and 0 ≤ β0 ≤ 1. Such a prior is proper
(i.e., there exists a normalizing constant) if α0 > 0 and β0 > 0. This is often, but not
always, the case. We will consider some improper priors below.

Each person will observe a few draws from this urn. This is their evidence. More
specifically, αc is the number of successes observed by both people, βc is the number of
failures observed by both people, αi is the number of successes observed only by person
i, and βi is the number of failures observed only by person i. Now we can specify ri
and ni. In particular, ri = αi + αc + α0 and ni − ri = βi + βc + β0.

The group credence function, which we will denote by Π(p) (i.e., small π for the
individual distribution, large Π for the group distribution), then corresponds to a situ-
ation when all of this information is combined. Therefore, it is a beta distribution with
parameters r∗ = r1 + r2 − αc − α0 and n∗ − r∗ = (n1 − r1) + (n2 − r2)− βc − β0:

Π(p|r, n) ∝ pr
∗−1(1− p)n−r∗−1. (7)

This implies that the group probability is p∗ = r∗

n∗ and the new sample size (resilience)
of the group is equal to n∗. The group probability p∗ can be expressed (using ri = pini

and n∗ = n1 + n2 − αc − α0 − βc − β0) as

p∗ =
r∗

n∗ =
p1n1 + p2n2 − αc − α0

n1 + n2 − αc − α0 − βc − β0

. (8)
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This final quantity, in (8), is what the group uses as its probabilistic estimate. This
is the reported probability – the valence. However, unlike approaches which focus on
deriving the probability alone, we derive the full group distribution, (7), and the two
are related because p∗ = E[p]. In sum, equations (6)-(8) describe the evidence-first
method. We now state a useful theorem about this method.

Theorem 1 (Update Commutativity). Let πi(p) be i’s prior distribution
for p, for i = 1, 2. Let Π(p) be the group prior, derived using (7). Let
πi(p|r, n) be i’s posterior distribution for p, obtained from πi(p) via Bayes’
Rule, after learning new information r and n − r, and let Π(p|r, n) be the
group posterior, obtained from Π(p) via Bayes’ Rule, also after learning r
and n− r. Finally, with slight abuse of notation, let Π(p)|r, n be the group
posterior obtained if we first update πi(p) to πi(p|r, n) and then combine
πi(p|r, n) using (7). Then,

Π(p)|r, n = Π(p|r, n). (9)

Proof in the Appendix.

Thus, unlike ordinary averaging (weighted or simple) our approach is update commuta-
tive. The proof of this theorem is straightforward. Any distribution in our framework
is simply characterized by the number of successes and failures, with probability given
by the proportion of successes. So when we combine the distributions, we just count
the total number of successes and failures. The only wrinkle to keep in mind is that
we must avoid double counting trials that were observed by both people. When we
“combine and then update” we first count the total number of successes and failures
in the priors, and then add new successes and failures. When we “update and then
combine”, we first count successes and failures for each agent, and then count the total.

There is another aspect of the model worth flagging. We suppose our individuals
have a common diffuse/uniform prior, since we use α0 and β0 instead of αi

0 and βi
0.

This assumption is not essential and it can ultimately be dropped, but because some
readers may find it problematic, we explain this modeling choice. To understand why
we make this assumption, consider two different cases. First, suppose A and B have no
prior information, and they adopt a uniform distribution on the basis of something like
the Laplacean principle of indifference.11 That is, both are completely ignorant before

11Laplace (1814). For recent defenses, see White (2010) and Pettigrew (2019). For the case of a
proportion, the flat prior is also the maximum entropy prior (Jaynes, 1957a,b).
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making the relevant observations and their prior is a true flat ur-prior.12 Thus, α0 = 1
and β0 = 1. Suppose we now want to combine these priors before updating on any
information. What should the group distribution be? Our model implies that it should
be beta(1, 1) and not beta(2, 2). This is intentional. We do not want two truly ignorant
individual priors to sum up to an informative group prior. Another way to put this is
that combining ignorance with ignorance should not lead to wisdom or confidence, just
as 0 + 0 = 0.

Second, suppose A and B do have concrete prior information. For example, A
has previously drawn balls from an urn in a game of chance at the Ringling Brothers
circus whereas B has done so at the Barnum & Bailey Circus. They now find themselves
together at the Ramos Brothers Circus, having to make predictions about an urn neither
has previously encountered. But they happen to know that all three circuses keep a
similar house edge so the proportions cannot vary too widely. Suppose they start with
beta(7, 3) and beta(3, 7) priors for the proportion of white balls in the urn at the
Ramos Brothers Circus. They then observe 4 draws, two of which are white and two
of which are blue. What should the group distribution be?

To answer this, we must make clear the sequence of updating. What happened
here is that both people updated on two sets of observations/ two experiments – first,
independently, at the Ringling Brothers / Barnum & Bailey Circus, and second, at the
Ramos Brothers Circus, together. Thus, we need to determine what their ur-prior was
before both sets of observations. Suppose again it was beta(1, 1).13 This implies that
they each observed 8 balls at the first circus, which is why the sum of α and β for both
is 10 before the second circus.

Which approach they use to set their ur-prior does not matter as long as there
is a shared understanding of what rationality calls for in the absence of information.
Accordingly, our assumption is like a weak version of the common prior familiar from

12By ur-prior, we refer to the stylized prior that an agent may hold before observing any evidence
whatsoever – the Lewisian superbaby (Hájek, ms).

13The flat beta(1, 1) prior is merely illustrative, though Babic (2019) argues it can be considered
maximally safe under certain loss functions. It may be instead that they adopted maximally ignorant
beta(0, 0) distributions, the so-called Haldane priors (Robert, 2007). Or perhaps due to symmetry
considerations, such as those articulated in Zabell (2005), they adopt the invariant Jeffreys’ prior,
which in this case corresponds to a beta(1/2, 1/2) distribution (Jeffreys, 1946). Notice that all the
above methods agree on one thing: namely, that α0 and β0 are very small, and in all three cases
just a little bit of information leads to similar predictions. Our approach is compatible with any
assumption one wants to make about how to represent true ignorance, as long as one is clear about
that assumption so that we know which part of their distribution is informed by the evidence, and
which part is informed by their prior commitments.
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microeconomic theory.14 It is “weak” in the sense that we do not assume rationality
writ-large requires universal agreement about ur-priors. We simply assume that the
members of the group agree in this regard. Importantly, however, they can pick any
starting point and our assumption that a uniform prior corresponds to an ignorant or
uninformative distribution is merely illustrative.

Given this specification of the problem – beta(1, 1) ur-priors, followed by (6,2) and
(2,6) white/blue observations alone at the first circus, followed by (2, 2) white/blue
observations at the Ramos Brothers Circus – the group posterior distribution becomes
beta(11, 11). We subtract only the initial α0 = β0 = 1 from the ur-prior and not the
(6, 2) / (2,6) observations made at the first circus, since these are ordinary independent
observations. If they started with beta(0, 0) ur-priors, the group posterior would be
beta(12, 12). The message is that we must be clear both about how the prior is selected
before observations are made, and about what evidence is available to each person, both
individually and jointly. In short, the only burden our framework imposes is that when
modeling common information, we have to be careful to model it via αc and βc and not
α0 and β0.

15 To further illuminate our model, we will look at several cases where (8)
takes a simple form.

4.3 Limited Evidential Overlap

In our approach, the simple case where there is no evidential overlap corresponds
to what Dietrich and Spiekermann (2013) would describe as a set of opinions which
are common cause conditionally independent. Let us examine this kind of situation.
Suppose

αc + α0 + βc + β0

n1 + n2

≪ 1,
αc + α0

p1n1 + p2n2

≪ 1. (10)

14This assumption is most notably associated with Harsanyi (1987) and Aumann (1987).
15In this sense, our weak common prior assumption might be described as a local or group-level

impermissivism about the requirements of rationality with respect to an ur-prior. While one can find
many defenses of both objectivism in the selection of priors (e.g., Williamson (2010)) and uniqueness
at large (such as Greco and Hedden (2016)), we do not need to assume such a strong position, as even
the weak/local impermissivist assumption is ultimately a modeling choice and may be relaxed.

16



This is the case if both people start with completely ignorant beta(0, 0) priors and
observe no information in common. That is, αc = α0 = βc = β0 = 0. Then, from (8),

p∗ =
p1

n1

n1+n2
+ p2

n2

n1+n2
− αc+α0

n1+n2

1− αc+α0+βc+β0

n1+n2

=

(
p1

n1

n1 + n2

+ p2
n2

n1 + n2

)(
1− αc + α0

p1n1 + p2n2

)(
1− αc + α0 + βc + β0

n1 + n2

)−1

≈ p1
n1

n1 + n2

+ p2
n2

n1 + n2

.

(11)

In this case, we recover the ordinary weighted averaging rule, as defended in Moss
(2011) and (Pettigrew, 2019), among others, where the weights are determined by n1

and n2, the total number of each person’s observations – i.e., their resilience. This is
intuitive, and indeed consistent with Pettigrew (2019)’s defense of ordinary weighted
averaging because the more resolute of the two people will exert a greater weight on the
group credence function. As Pettigrew suggests, it appears reasonable that the weights
of an aggregation function reflect expertise – so that more knowledgeable members exert
more influence on the group’s belief. It is also consistent with the interpretation given
to the weights in ordinary weighted averaging in Romeijn (2020). Romeijn interprets
the weights in terms of the truth conduciveness that one agent assigns to the other,
which can also be thought of in terms of the trust placed in them.16 Accordingly, not
only do we recover the ordinary weighted averaging rule, but in doing so we also provide
a principled reason for how to assign the weights in that rule: namely, by using them
to encode resilience.

4.4 Equal Resilience

Consider the case where n1 = n2 = n. Here things become even more straightfor-
ward since if common information is small, then we will combine individual credences
by simple ordinary averaging:

p∗ =
p1 + p2

2
. (12)

This is intuitive. When resilience is equal, the weights in the ordinary averaging rule
ought to be equal. And it can be motivated on similar grounds as above: if we have a
group of equally knowledgeable agents, it is reasonable to assign them equal weights.

16Truth conduciveness, following its meaning in the Condorcet jury theorems, implies that it is more
probable that the person believes (i.e. ‘votes for’) a proposition if it is true than if it is false. See
Romeijn and Atkinson (2011).
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But according to (8), the prior parameters (α0 and β0) and the number of successes
and failures observed by both people (αc and βc) can change this formula. From (8),

p∗ =
(p1 + p2)n− αc − α0

2n− αc − α0 − βc − β0

. (13)

Without loss of generality, suppose that p1 ≤ p2. Then 0 ≤ αc + α0 ≤ p1n and
0 ≤ βc + β0 ≤ (1− p2)n. The case where αc + α0 = 0, βc + β0 = 0 corresponds to
a situation where the body of common evidence is small, and as a result, p∗ = p1+p2

2
,

n∗ = 2n. But now consider two further cases, where either αc + α0 or βc + β0 is at a
maximum or a minimum.

Case 1. αc + α0 = p1n, βc + β0 = 0. Then, by (13), p∗ = p2n
2n−p1n

= p2
2−p1

;

n∗ = (2− p1)n. So not only is the combined resilience now less than 2n, but p∗ is
different from the average of individual probabilities. Even if p1 = p2 = p, the combined
probability is still p∗ = p

2−p
< p. This is because in this case successes are observed by

both people together, while failures are observed by each person separately.

Case 2. αc + α0 = 0, βc + β0 = (1− p2)n. Then, by (13), p∗ = (p1+p2)n
2n−(1−p2)n

= p1+p2
1+p2

;

n∗ = (1 + p2)n. As in the previous case, the combined probability is again different
from what simple averaging would suggest.

4.5 A Closer Look at Priors

We now examine the impact of the prior distributions. Assume αc = βc = 0 and
α0 = β0 = d. Let pa =

p1+p2
2

, which would be the combined probability under ordinary
simple averaging. Then,
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p∗ =
(p1 + p2)n− d

2n− 2d

=
p1+p2

2
− d

2n

1− d
n

=
pa

(
1− d

n

)
+ pa

d
n
− d

2n

1− d
n

= pa +

(
pa −

1

2

)
d

n

n

n− d

= pa +

(
pa −

1

2

)
d

n− d
.

(14)

This highlights an important feature of our model, which we call exremization (Licht-
endahl et al., 2021). By extremization we refer to a phenomenon that Easwaran et al.
(2016) call synergy. It implies that the group belief can lie outside the interval formed
by the lower and upper bounds of individual beliefs. Examining the last line in (14),
we can see that p∗ extremizes away from 1

2
whenever the quantity on the right side of

the sum is not 0. That is, the group credence extremizes unless d = 0, or pa = 1
2
, or

ri = 0 or ni − ri = 0. Meanwhile, adopting a uniform prior in the above case would
correspond to a situation where d = 1, and for small n the extremization can be quite
substantial. Note also that extremization will occur even if p1 = p2 = pa.

Extremization is not possible under ordinary averaging rules, where the group belief
must lie in the convex hull of the set of individual beliefs. But we agree with Easwaran
et al. (2016) that extremizing can be rational, especially in cases where, as here, the
common evidence is small. Consider a more realistic scenario. A company’s executive
committee is predicting whether the company will break even next year. It consists of
the heads of marketing, finance, and operations. All three independently report that the
company has a 97% probability of breaking even. Given that each of these executives
is coming from a different area of the company, and is likely basing their forecast on
largely independent evidence, it is particularly plausible that the group credence should
be above 0.97. Indeed, if the credence remains at 0.97, as ordinary averaging requires,
we are likely throwing away information (see also Christensen, 2011).

Finally, note that under a uniform prior, i.e., where α0 = β0 = d = 1, the posterior
distribution is proportional to the likelihood. Therefore, if we combine two distri-
butions, and we assume that each person started with a uniform prior and received
independent signals, i.e., αc = βc = 0, then the combined posterior will be proportional
to the product of their individual distributions. In such a case, the individual distribu-
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tion of person i is beta with ri and ni − ri, and the combined distribution is beta with
r1 + r2 − 1 and n1 − r1 + n2 − r2 − 1, which is what we would get if we multiply their
individual distributions:

pr1−1(1− p)n1−r1−1pr2−1(1− p)n2−r2−1 = pr1+r2−1−1(1− p)n1−r1+n2−r2−1−1. (15)

Therefore, with independent signals under uniform priors we recover the so-called Upco
rule from Easwaran et al. (2016) for updating on the credences of others. Upco is derived
as the product of odds ratios – for one person, the odds ratio is p/(1− p), for another
it is q/(1− q), so the product is qp/[(1− p)(1− q)], and after normalization we obtain
Upco.

But, our method produces a combined distribution for p, and the expected value
of that distribution would be the probability for the next ball drawn to be white. In
Upco on the other hand (as defined on Easwaran et al., 2016, pg. 3), the rule applies
directly to the probabilities of the next ball, which are not sensitive to considerations
of resilience. Thus our approach coincides with Upco only under uniform priors and
independent signals. For example, if r1 = r2 = 100 and n1 = n2 = 1000, then our
combined probability will still be around 10%; with Upco, if we combine p = q = 10%
we would get a group probability of about 1%.

5 A Worked Example: Hiring a Netflix Developer

To get a better feel for the evidence-first method, consider an extended and more
realistic example.

Netflix. Netflix is interested in hiring an original series developer. This will
be a full-time employee whose job is to bring new pitches, specs, etc., to the
streaming service. The search committee consists of two members, Ahmed
and Beatrice. The shortlist of competing candidates are all individuals with
significant prior experience in developing shows. The committee considers
a show successful if it runs for one season or more and turns a profit. Of
interest, then, is the developer’s probability of creating a successful show.
They are now considering a well-known developer named Jean Marscome.

Suppose A and B each report the following probabilities of JM’s success: 0.7 and 0.3,
respectively. These are their naked probabilities – or valences – and we now know that
this is not enough to appropriately combine their beliefs. Rather, we should elicit the
members’ individual evidence on which these predictions are based and piece together
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their full distributions, from which we then derive the group distribution and make
predictions about JM.

Thus we first need to know their priors for p. Suppose A and B agree that in
the absence of information one should apply the principle of indifference and they both
adopted a uniform prior. In fact, suppose that this is standard Netflix company policy in
the context of recruiting: before any information on a candidate is obtained, the hiring
committee must treat the candidate’s probability of success as uniform on [0, 1]. This
is not an unwise policy – it may be enforced to avoid favoritism among job candidates.

Next, suppose they each lay their cards on the table. A is familiar with 8 of JM’s
shows, 6 of which were successful, and 2 of which were unsuccessful. Meanwhile, B is
also familiar with 8 of JM’s shows, but 2 of them were successful and 6 of them were
unsuccessful. We can now account for the resilience of their credences, because we have
the weight of their evidence. But we still need to untangle potential dependencies.

Finally, A and B list the JM shows they are familiar with, identifying each as a
success or failure. As part of this exercise, we learn that they have 2 shows in common,
both of which were a failure. We now know all six parameters (α0, αi, αc, β0, βi, βc).
From these, we can determine n and r, compute the individual distributions, and pre-
dictions, and the group distribution and prediction. The following table summarizes
the above.

Ahmed Beatrice Group (Netflix)

α0 1 1 1
β0 1 1 1
αi 6 2 8
βi 0 4 4
αc 0 0 0
βc 2 2 2
n 8 8 8 + 8− 2 = 14
r = α0 + αi + αc 1 + 6 + 0 = 7 1 + 2 + 0 = 3 1 + 8 + 0 = 9
n− r = β0 + βi + βc 1 + 0 + 2 = 3 1 + 4 + 2 = 7 1 + 4 + 2 = 7
Full distribution for p beta(7, 3) beta(3, 7) beta(9, 7)
Prediction of JM’s success, i.e., E[p] 7/10 = 0.7 3/10 = 0.3 9/16 = 0.5625

Table 1: Individual and group beliefs in Netflix example.
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We highlight several points. First, the group prediction is not a simple average of
the individual predictions. It is tilted upward because there are overlapping failures and
no overlapping successes. By comparison, Russell et al. (2015) and Dietrich (2019)’s
geometric mean would produce a prediction of 0.46 without normalization, since (0.7×
0.3)1/2 = 0.46, putting more weight on Beatrice, and 0.5 with normalization.

Notice, also, the effect of resilience. If after combining their beliefs into a group
distribution, they were to watch three of JM’s shows together, all of them a failure,
they would update to a group distribution of beta(9, 10) and the prediction of JM’s
success would then drop from 0.56 to 0.47. Now suppose we double all the values in the
original example, so that the group belief is beta(18, 14) before they watch any shows
together. This time, again, they watch three shows, all failures, thereby updating
the group distribution to beta(18, 17). Now the prediction drops from 0.56 to 0.51.
Because such a group is more resolute in its estimate of JM’s success, it responds less
to 3 failures than it did in the original case. This is a facet of the situation that the
current approaches in the literature are not equipped to handle.

Finally, our approach streamlines certain distinctions often made in the aggregation
literature. Dietrich (2019), for example, argues that there are “different types of group
Bayesianism, depending on the kind of information on which one requires groups to
conditionalize [public, semi private, private]” (pg. 721). This tri-partite distinction
is a necessary byproduct of the assumption that the credence profile is a sufficient
summary statistic of individual beliefs. Our approach, by comparison, does not require
a multitude of Bayesianisms. There is only one way to be Bayesian, namely, by passing
whatever is learnt through Bayes’ Rule. Public information consists of balls observed
by every member of the group. Semi private information consists of balls observed by
two or more but not all members of the group. Private information consists of balls
observed by only one member of the group. To further drive the reader’s intuition, we
include in the figure below a visual representation of the Netflix situation.
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A

B

Figure 1: A and B’s combined credences about JM. The white balls are successes and
the blue balls are failures. The points inside the box are the common uniform priors.
The points outside the box but inside the intersection constitute shared evidence. And
the points outside the intersection constitute each person’s individual evidence.

6 Scope and Applicability

One might wonder whether the range of aggregation problems within the scope of
our prescriptive approach is too limited. As in the Netflix example, our framework may
at first blush seem to call for conditions that are often unmet in real life: namely, the
individuals in the group should be able to have a conversation and reveal their total
evidence. But what about cases where individual credences do not arise from such a
clean and well-specified process?
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While we think the requisite conditions are not as unattainable as may first ap-
pear, it is nonetheless true that sometimes we cannot so neatly disclose our evidence.
Indeed there may be times where a decision maker is faced with the unenviable task
of combining bare individual forecasts (which may have been compiled for them by
someone else, or made a long time ago, or by experts who are now inaccessible, etc.).
In short, one might suggest that the credence profile sufficiency assumption, common
in the literature, is not so much a desideratum of the belief combination problem as it
is a description of the hard reality in which beliefs must be combined.17

Even in such cases, however, our approach remains valuable as a normative bench-
mark for evaluating the rationality of group beliefs. To understand how, suppose we
really are in a situation where we have to aggregate credences without access to the
full evidence set, or perhaps to any evidence at all. In such cases, we can apply the
framework we suggest in reverse. Instead of using this approach as a recipe for how to
reach a specific group distribution, we can instead identify a range of permissible group
credences which are consistent with our best estimate about the plausible evidence
histories of the individual members.

For example, suppose that in the case of drawing marbles from urns, we have A and
B’s predictions that the next marble will be white. We also know that they observed
some of the same draws, but we are not sure how many they observed in common.
Suppose that we have no further information. In this situation, we have to make some
assumptions about their resiliences, and about the extent of their evidential overlap.
There are many evidence histories compatible with their predictions. Accordingly,
we can construct upper and lower bounds on what the rationally permissible group
prediction should be. The normative guidance that our approach produces in this
case is not as specific as in the Netflix example, but that is to be expected since the
information structure is now far more impoverished.

To make this more precise, consider how we would make such evaluative judgments
without knowing the actual evidence histories. First, we need to estimate individual
resiliences, giving more weight to sharper distributions. If we have no basis on which to
estimate these, we might start by assuming that everyone’s resiliences are the same (for
similar reasons that would motivate the Laplacean Principle of Indifference). Next, we
have to estimate the overlap in their evidence. This will depend on our assessment of
the number of evidence histories consistent with the individual credences. But helpfully,
our results from Section (4) provide some general bounds on what is permissible.

17Thanks to [OMITTED] for raising this consideration.
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If we go back to our Cases 1 and 2 (Section 4.4), we have there equal resilience
leading to simple averaging, such that p∗ = (p1+p2)/2, but only if common information
is small. Thus we can now reconsider extreme cases of overlap to see what happens.
Assuming again without loss of generality that p1 < p2, then in Case 1 αc is at a
maximum and by (13), p∗ = p2/(2 − p1). In Case 2, βc is at a maximum and by (13),
p∗ = (p1 + p2)/(1 + p2). This means that

p2
2− p1

< p∗ <
p1 + p2
1 + p2

. (16)

To better understand this inequality, we plot these bounds on the group credence p∗ in
Fig 2, below. The plot depicts p∗ (z-axis) as a function of p1 (x-axis) and p2 (y-axis).
We can see that the bounds on p∗ are very tight at the extremes, and widest near
middling values. This is to be expected because when the valences of the individuals’
predictions are near middling values then there are many possible evidence histories
consistent with the group’s credence – i.e., many different ways the evidence could be
overlapping among the group’s members. In such cases, our approach is at its most
permissible. It allows the group belief to be anywhere between these wide bounds.
However, as the individual credences become sharper in their valence – i.e., closer to 0
or 1 – then our approach narrows down the range of rationally permissible credences
the group could adopt.
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Figure 2: Plot depicting bounds on the group credence, p∗, as a function of A and B’s
credences, p1 and p2, respectively, depending on different estimates about the degree of
evidential overlap among the group’s members. All axes range from 0 to 1.

We can further illuminate the normative constraints that our approach imposes by
considering a few special cases of (16). Consider, first, the case where the individuals’
credences are identical (p1 = p2). Letting p1 = p2 = p, (16) reduces to,

p

2− p
< p∗ <

2p

1 + p
. (17)

We can now plot these bounds as a two dimensional slice of the above plot, as follows.
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Figure 3: Plot depicting bounds on the group credence, p∗, as a function of A and B’s
credences, p, depending on different estimates about the degree of evidential overlap
among the group’s members.

Consider two further cases. When p1 = 0,

1

2
p2 < p∗ <

p2
1 + p2

. (18)

And when p2 = 1,
1

2− p1
< p∗ <

1 + p1
2

. (19)

By comparison, the simple average is p2/2 when p1 = 0 and (1 + p1)/2 when p2 = 1.
Thus, simple averaging here corresponds to only one of many compatible evidence
histories.
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Figure 4: Plot depicting bounds on the group credence, p∗, as a function of A and B’s
credences, p, depending on different estimates about the degree of evidential overlap
among the group’s members. In the left panel, p1 = 0, corresponding to (18), and in
the right panel, p2 = 1, corresponding to (19).

The point, in short, is that there are two ways to make use of the evidence-first
method. The first is where the individuals are able to share their total evidence with
each other and discern the degree of its overlap. In such cases, our approach offers
essentially a step-by-step recipe for getting to a full group distribution. The general
idea here is that we start from the notion that we should use all available information,
in the spirit of Good (1967), and we identify a systematic approach to combining
that information in a way that is particularly sensitive to avoiding evidential overlap.18

Moreover, the aggregation method we propose is maximally fine-grained, or informative,
in the sense that we identify the full distribution. Using that distribution, the group
can then pull out any statistic of interest – such as a mean, a confidence interval, or
any quantile.

The second is where the individuals do not know either what the evidence is or the
extent of its overlap (or both). In such cases, they can use the individual predictions to
construct upper and lower bounds on the rationally permissible group credence. So even
though in this case we cannot tell the group where, precisely, to move to, we can tell

18This is particularly important because if the individual members of the group are even slightly
correlated, then the incremental value of additional members (i.e., of additional information) fades
away rather quickly. For example, see Figure 1 of Clemen and Winkler (1985).
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the group which credences to avoid. This is similar to how Joyce (1998), for example,
views the normative role of the accuracy-dominance framework. In that framework,
if an agent has incoherent credences, we cannot tell her which coherent credences,
precisely, she should adopt. But we can tell her that there are many credences which
accuracy-dominate her own, and therefore that she should not remain where she is.
Thus, our approach serves as a normative guide in both cases. However, the more
information we have about the aggregation problem, the more firmly are the standards
of rationality delivered by the evidence-first method.

7 Concluding Remarks

We have presented a general and flexible evidence-driven framework for combining
beliefs. The method’s core virtues are that the group belief is update commutative and
reflects the full range of information available to its individuals while simultaneously
taking into account any overlaps in their evidence. Beyond the technical virtues, our
hope is to encourage a general rethinking of the belief combination problem, from a
question of how to combine numerical credences, to a question of how to identify and
appropriately combine evidence.

Appendix

Theorem 1 (Update Commutativity). Let πi(p) be i’s prior distribution
for p, for i = 1, 2. Let Π(p) be the group prior, derived using (7). Let
πi(p|r, n) be i’s posterior distribution for p, obtained from πi(p) via Bayes’
Rule, after learning new information r and n − r, and let Π(p|r, n) be the
group posterior, obtained from Π(p) via Bayes’ Rule, also after learning r
and n− r. Finally, with slight abuse of notation, let Π(p)|r, n be the group
posterior obtained if we first update πi(p) to πi(p|r, n) and then combine
πi(p|r, n) using (7). Then,

Π(p)|r, n = Π(p|r, n). (20)

Proof: Suppose, first, we update then combine. We know that each person’s priors are
given by:

π1(p) ∼ beta(α0, β0),

π2(p) ∼ beta(α0, β0).
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Using Bayes’ Rule, we obtain the following individual posteriors:

π1(p|r, n) ∼ beta(α0 + α1 + αc, β0 + β1 + βc),

π2(p|r, n) ∼ beta(α0 + α2 + αc, β0 + β2 + βc).

where d is now expressed in terms of αi, αc, and βc. Combining these, we get the
following group distribution:

Π(p)|r, n ∼ beta(α1 + α2 + 2(αc + α0)− αc − α0, β1 + β2 + 2(βc + β0)− βc − β0)

= beta(α1 + α2 + αc + α0, β1 + β2 + βc + β0)

= beta(r∗, n∗ − r∗)

=
Γ(n∗)

Γ(r∗)Γ(n∗)
pr

∗−1 (1− p)n
∗−r∗−1,

where Γ(n) = (n− 1)!.

Suppose, next, we first combine then update, as in Equation 7. We know that each
person’s priors are given by:

π1(p) ∼ beta(α0, β0),

π2(p) ∼ beta(α0, β0).

Combining these distributions, we obtain:

Π(p) ∼ beta(2α0 − α0, 2β0 − β0)

∼ beta(α0, β0).

If we now update this group distribution, we get the following group posterior:

Π(p|r, n) ∼ beta(α0 + α1 + α2 + αc, β0 + β1 + β2 + βc).

Note that α0 + α1 + α2 + αc = r∗ and β0 + β1 + β2 + βc = n∗ − r∗. Hence,

Π(p|r, n) ∼ beta(r∗, n∗ − r∗).

As a result,

Π(p|r, n) = Π(p)|r, n.

□
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