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1 Introduction

In the development of medical artificial intelligence (medical AI) applications there
exists a pressing set of open questions around how to effectively build the associated
regulatory landscape. Among these questions is what the role of the US Food and
Drug Administration (FDA) and its counterparts in other countries should be, and how
much we should now rely on the institutional infrastructure that historically evolved
for the oversight of traditional (non AI) software in medical devices. In “Regulation
of Medical AI: Policy Approaches, Data, and Innovation Incentives”, Stern develops a
very illuminating project that can help us begin to chart answers to these questions.
The project is backed by an insightful empirical analysis – using FDA data on cleared
medical AI devices together with data on adverse events and recalls – that sheds further
light on who is developing these technologies, how they are performing, and their relative
safety.

In this comment I will offer (1) a partial summary of Stern’s article, (2) a brief
analysis of the interesting empirical insights, and (3) a more open-textured discussion
of the emerging trends and unsettled questions in medical AI regulation.

2 Partial Summary

While there is a large variety of medical AI applications, as Stern explains, substan-
tial energy and attention centers on those that are performing or assisting in diagnostic
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and treatment tasks. These are likely to qualify as medical devices under the 1976
Medical Device Amendment to the 1938 Federal Food, Drug, and Cosmetic Act. The
FDCA is the chief statute empowering the FDA with authority to oversee the safety of
medical products.

When a technology qualifies as a medical device, the FDA takes a tri-partite ap-
proach to its regulation. The lowest risk (Class I) devices are subject only to modest
(manufacturing) controls. Moderate risk (Class II) devices are regulated through a
process called premarket notification (or the 510(k) pathway), requiring the maker to
demonstrate either substantial equivalence to an existing regulated device or to pass a
de novo classification request. The de novo process in turn requires the maker to pro-
vide reasonable assurance of safety and effectiveness of the device for its intended use.
Finally, the highest risk (Class III) devices require premarket approval, which typically
includes evidence from clinical trials.

When it comes to medical AI, most devices are dubbed Software as a Medical Device
by the FDA (SaMD) – as opposed to software in a medical device (SiMD) and are going
through the moderate risk (Class II) processes. For example, Benjamens et al. (2020)
compile a database of medical AI technologies that have been cleared by the FDA, and
of the 79 devices on their list all but two were brought to market under the Category
II scheme – i.e., going through the 510(k) or de novo pathway.

Accordingly, Stern’s empirical analysis runs through the following pipeline: Stern
begins with the full FDA 510(k) database for the years 2010-2022Q3, containing over
38,000 devices. The scope is then further limited to applications in eight of the largest
medical specialties, resulting in approximately 31,000 clearances. This database is then
merged with two additional sources of information, (1) data from the FDA’s medical
device adverse event reporting database, and (2) data from the FDA’s recall database.
Stern then uses text analysis to identify devices with a software component (∼8,500
devices), and among those Stern uses additional keywords to identify AI based software
devices as a proper subset (303 devices). Importantly, the keywords used to identify
AI based devices are “artificial intelligence,” “deep learning,” “machine learning,” and
“neural network.”

3 Empirical Insights

Some interesting trends worth highlighting are the following: the use of the Class
II de novo pathway is twice as common among AI devices; the majority of devices are
being brought to market by privately held firms; and the number of clearances has
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more than doubled per year during the observation period. Geographically, the United
States, Israel and Japan hold a disproportionate share of the medical AI innovation
market. While it is small surprise that the United States has the most FDA clearances,
the outsize performance of Israel and Japan relative to its peer countries with strong
biomedical innovation, such as France and South Korea, is interesting.

Perhaps the most notable, however, is Stern’s analysis of device safety outcomes
– made possible by the merging of 510(k) clearance data with data on adverse event
reports and recalls. While it is very insightful it is also necessarily preliminary – be-
cause we simply do not have enough devices, or a long enough observation period, to
make more definitive statements about the relative safety of medical AI vs. non-AI
technologies.

For example, in the full sample of approximately 30,000 devices, there were slightly
over 4,000 adverse event reports. For the subset of devices containing software (AI or
non AI) there were just over 1,000 adverse event reports, out of a total of approximately
8,500 devices. And for AI based medical devices, there were 9 adverse event reports
out of a total of approximately 300 devices. Meanwhile, for recalls, there are 1,000
recalls in the full sample, just over 500 in the subset of software based devices, and 5
in the subset of AI based software devices. While this suggests that, proportionately,
medical AI devices are overall safer, we must temper that conclusion by how much we
can learn from the small numbers observed over a relatively short period. As an aside,
assessments of adverse event reports also have a censoring problem worth taking into
consideration – we cannot distinguish between the non-occurrence of an event and an
event that occurred but was unreported.

There is also an interesting methodological question here. Consider a hypothetical
example: In medical materials engineering, emerging technologies are often quite inva-
sive – such as catheters, VADs, and heart stents. They are used to treat very serious
illness, and their role in the body can be critical to a patient’s survival. As a result,
the potential for things to go wrong is substantial. And when things do go wrong,
they go wrong unambiguously – for example, a device breaks in the patient’s body or
stops pumping blood as it should. This is not an ideal example, because such devices
would likely be Class III devices, but I use it here merely to illustrate a general point –
namely, that in non medical AI devices used for treatment, it is clear how defects can
occur and it is likewise clear what would constitute evidence of such defects.

But now consider some archetypal medical AI applications: For example, consider
an imaging diagnostic assistant tool – a device that, say, reads an x-ray and outputs
a probability of a bone fracture. What would be a mistake or a malfunction in this
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case? After all, the result is produced in the form of a probability. And, it is used in
conjunction with a radiologist’s expert opinion. So unless the device crashes, it is hard
to envision a situation where we would see evidence of a defect from its performance.

One thing we might do is try to stress test the device in an adversarial fashion –
try to identify cases where small changes in input lead to large changes in output, as
Babic et al. (2019) suggest. This would be closer to a defect, because the classification
function is failing to satisfy a Lipschitz condition, so to speak – cases that are similar
along some metric in their inputs are treated very differently in their outputs. But
this is not something that users would do in the ordinary application of medical AI
devices. And that further suggests that maybe in the world of medical AI, we will need
to focus more on ongoing regulation and assessment, as Gerke et al. (2020) argue, than
on traditional adverse event reports or user identified problems leading to recalls.

4 Emerging Trends and Open Questions

This leads to the final section. I will focus on three open questions: (1) updating,
(2) model transparency, and (3) regulatory loopholes.

4.1 Updating

The above considerations suggest that traditional approaches to evaluating safety
performance may not be ideal as applied to medical AI devices. This is consistent
with what Babic et al. (2019) dub the update problem. Traditionally, the FDA has
required software based medical devices to undergo a new round of review every time
the underlying code is changed.

As Stern explains, for a Class II device, there are no regulatory provisions for amend-
ing or changing an existing 510(k) clearance, and any modification would presumably
require a new 510(k) to be submitted. Class III devices require a “PMA supplement”,
an onerous submission justifying the software changes. In other words, once SaMD is
approved, the associated software is locked on approval.

This makes for a very unproductive regulatory approach for medical AI, where the
main benefit comes from the algorithm’s ability to learn from new data. For instance,
imagine a simple linear classification function where the odds of x are given by eβ0+βx′

.
As part of the approval process the β parameter coefficients would be fit to some training
sample. Now, as the algorithm is applied in practice and new observations come in,
would a change in the βs trigger a requirement for a new 510(k)? Plausibly yes, because
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any change in the βs can change the input-output relationship, which the FDA requires
to be fixed. Such a policy is very antithetical to the ‘learning’ in ‘machine learning.’

Fortunately, as Stern recognizes, the FDA has recently proposed a new total prod-
uct life-cycle regulatory approach, which would move away from the black and white
practice of approve/deny and its associated discouragement of software updates. Since
this proposal is still in its infancy, it is hard to know how it will look, but in principle
it could make for a more productive partnership between the FDA and medical AI
manufacturers. Indeed, it could allow regulators to move away from looking at isolated
adverse event reports and to take a more participatory and ongoing monitoring role of
medical AI devices – to take a system view, as Gerke et al. (2020) suggest. For exam-
ple, regulators can be on the lookout for common modeling problems that can lead to
patient harm, such as concept drift, covariate shift, and model instability (in the sense
of similar inputs leading to very different outputs) (Babic et al., 2019).

4.2 Model Transparency

Stern identifies AI devices using the keywords enumerated above – such as “deep
learning” and “neural network”. These keywords are typically associated with so-called
“black box” machine learning models, and it is worth considering whether there are
other medical AI applications that do not use these terms which are missed by the
search – for example, devices described as classification models, multivariate analyses,
regressions, or statistical learning techniques. I doubt there are many, but if there are, it
would be particularly illuminating to include them because such models are more likely
to be transparent (“white boxes”) and a number of scholars have argued that they
should be preferred in medicine (Babic et al., 2021a) and other high stakes settings
(Rudin, 2019). Indeed, it would be interesting to compare the performance of different
types of medical AI devices (black box vs. white box) with respect to adverse event
reports and recalls. It may be that white box models have less adverse event reports,
but it may also be that problems are easier to identify when white box models are
used, with the counter intuitive implication that they have mode adverse event reports
without being any less safe.

This brings up a more general question of how if at all model transparency should
enter into the regulatory equation. Currently, the FDA is agnostic between different
types of classification algorithms. That is, there is no necessary advantage to using a
transparent linear model as opposed to a deep learning one, from the perspective of
gaining FDA clearance for a medical AI product. But as the agency transitions to the
total product life-cycle regulatory approach, it is worth considering whether the black
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box nature of a system’s algorithm is something to be on the lookout for.

4.3 Loopholes

While significant attention has been paid to Class II and III medical AI devices,
very few medical AI applications actually qualify as a device, and even if they might
qualify as a device, the FDA often exercises enforcement discretion, meaning that the
FDA will not enforce regulatory requirements over these products. In effect, then,
they are altogether outside the scope of the FDA’s regulatory purview. This is true in
particular for what are deemed “health or wellness” applications (Babic et al., 2021b).
For example, mobile apps that are designed to track weight and fitness levels.

Devices like these pose an interesting problem from a public policy perspective.
Arguably we tolerate the manufacturers circumventing the regulatory landscape because
the individual risk they pose to patients is low. For example, consider mobile phone
apps that have a partial diagnostic function – such as detecting high heart rate. Since
these apps tend to have high sensitivity the biggest risk, one might think, is that of a
false positive (a false health scare) requiring a specialist follow-up.

However, it is worth asking whether our regulatory infrastructure should be built
around individual patient harm in the way that the regulation of medical practice is. As
policy makers, we may want to look at the medical AI ecosystem as a whole. And from a
social/aggregate perspective, these negligible individual costs can add up. For example,
if millions of people require a specialist follow-up to correct a false positive generated by
a mobile phone app, this creates a large social cost borne by taxpayers. Another way to
put the point: when it comes to unregulated mobile apps, perhaps device manufacturers
should be required to bear the costs of the health care externalities that they generate.

5 Concluding Remarks

At the widest level of generality, and by way of closing, it is worth asking whether we
should regulate algorithms by their domain of application (medicine, criminal justice,
finance, etc.), or whether we should have one agency that regulates algorithmic tech-
nologies across different domains, as Tutt (2017) has recently argued. Stern effectively
demonstrates how the former approach, which is currently the one we take, requires
agencies to significantly upgrade regulatory environments that were developed a long
time ago and for very different purposes. And we see this struggle in the case of the
FDA – attempting to quickly evolve their approach to governing medical software in
a way that can suitably cover medical AI applications. Arguably, the latter approach
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(a separate agency for governing algorithms across domains) would allow for a more
uniform, flexible and holistic regulatory environment for all AI technologies, regardless
of their field of application.
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