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This project represents the first systematic assessment of the US Food and Drug Administration’s
postmarket surveillance of legally marketed artificial intelligence and machine learning based medical
devices. We focus on the Manufacturer and User Facility Device Experience database—the FDA’s
central tool for tracking the safety of marketed Al/ML devices. In particular, we evaluate the data
pertaining to adverse events associated with approximately 950 medical devices incorporating Al/ML
functions for devices approved between 2010 through 2023, and we find that the existing system is
insufficient for properly assessing the safety and effectiveness of Al/ML devices. In particular, we make
three contributions: (1) characterize the adverse event reports for such devices, (2) examine the waysin
which the existing FDA adverse reporting system for medical devices falls short, and (3) suggest
changes FDA might consider in its approach to adverse event reporting for devices incorporating Al/

ML functions.

There is substantial discussion on whether the U.S. Food and Drug
Administration (FDA)’s current regulatory regime of medical devices that
incorporate Artificial Intelligence and Machine Learning functions (AI/ML
devices) is adequate'~. The fact that the FDA’s newly-established Digital
Health Advisory Committee dedicated its inaugural meeting to discussing
“total product lifecycle considerations for Generative Artificial Intelligence
(AI)-enabled devices” is a testament to the prominence and priority of the
topic among regulators’. Many critiques and concerns associated with Al
devices focus on representativeness, diversity, and bias in the training and
validation data of a particular AI/ML device'. In this study, we focus on a
different dataset, which has not yet been sufficiently scrutinized—namely,
the FDA’s system for reporting on adverse events associated with medical
devices, which is known as the Manufacturer and User Facility Device
Experience (MAUDE) database.

We focus on postmarket surveillance of legally marketed medical
devices and how existing regulatory practice interacts with the rapid
emergence of AI/ML devices. As of August 2024, the FDA had authorized
950 AI/ML devices’. While FDA has a long-standing and comprehensive
system for reporting adverse events associated with all medical devices into
its MAUDE database, it is unclear how well this existing system works for
capturing the kinds of issues and problems that are especially likely to arise
from AI/ML devices.

We examine FDA’s MAUDE database from 2010 to 2023. In parti-
cular, we evaluate the data pertaining to adverse events associated with
medical devices incorporating AI/ML functions for devices approved

between 2010 through 2023. We make three contributions: (1) we char-
acterize the adverse event reports for such devices, (2) we examine the ways
in which the existing FDA adverse reporting system for medical devices falls
short, and (3) we suggest changes FDA might consider in its approach to
adverse event reporting for devices incorporating AI/ML functions in the
service of more effective post-market surveillance and public health.

This project proceeds as follows. We first describe the regulatory
background of the FDA’s medical device reporting (MDR) system and the
MAUDE database as well as the data collected for this study and the central
results, including the limitations of the MAUDE database and some fun-
damental problems of a regulatory regime centered around postmarket
surveillance. In the Discussion, we explore two possible avenues for
improving the current regime: first, how to improve the system of post-
market surveillance so as to better track problems that are particularly
salient to AI/ML devices and, second, whether to move to a different reg-
ulatory regime altogether. In Methods we describe how we obtained our
final dataset, namely, using FDA’s downloadable 510(k) files and Nyquis-
tAD's database, thereby arriving at a final dataset which comprises 823
unique FDA cleared AI/ML devices corresponding to a total of 943 sub-
sequent adverse events reported (MDRs for short) between 2010 and 2023.

In the United States, modern medical device regulation began with the
1976 Medical Device Amendments (MDA) to the 1938 Federal Food, Drug
and Cosmetic Act (FDCA)‘. The FDA’s medical device reporting (MDR)
system is one of the central postmarket surveillance tools for managing
medical device related adverse events and ensuring the ongoing safety and
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efficacy of products once they are authorized for marketing and used in
patients.

The core reporting requirements for medical device adverse events are
laid out in the Medical Device Reporting Regulation (21 CFR, Part 803),
which was published on December 11, 1995 (60 FR 63578), and is
authorized by Section 519 of the FDCA (21 CFR, Part 803 and 60 FR 63578).
The MDR system requires manufacturers, user facilities, and importers of
legally marketed medical devices to submit reports of certain adverse events
involving their medical devices (21 CFR 803.10(a)-(c)). The FDA refers to
these as “MDR reportable events.”” MDR reportable events for device
manufacturers include reports of death, serious injury, or device malfunc-
tion. A malfunction is reportable if it would be likely to cause death or
serious injury if the malfunction were to recur (21 CFR 803.3 and 21 CFR
803.50). MDR reportable events include 30-day reports and 5-day reports.
5-day reports are generally only required when a reportable event requires
remedial action to prevent an unreasonable risk of substantial harm to the
public health (21 CER 803.10(c)). Any of the following issues can be a factor
in an MDR reportable event: failure, malfunction, improper or inadequate
design, manufacture, labeling, or user error (21 CFR 803.3).

The current regulatory system for postmarket surveillance has
emerged out of an infrastructure which was initially developed for
hardware-only medical devices (such as stents and hip implants), and
eventually evolved to regulate software features embedded in medical
devices (such as the software powering large pieces of digital radiology
equipment) as well as software products that themselves meet the legal
definition of a medical device according to the FDA (such as simple diag-
nostic algorithms)®. However, AI/ML devices present unique and different
challenges relative to existing devices-both traditional and digital. For
example, AI/ML systems may be trained on a set of data from one popu-
lation but used in a population with very different characteristics and per-
form poorly in that new population’"". Likewise, the distribution of the
population characteristics on which they are deployed may simply shift over
time. These concepts are referred to as “concept drift” (which refers to the
change in the relationship between the population characteristics and the
target variable under study) and “covariate shift” (which refers to the change
in the distribution of the population characteristics alone) and we address
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Fig. 1 | Distribution of adverse events by product code. This figure presents the
number of reported adverse events (MDRs) linked to each of the 20 product codes
identified in our merged dataset of FDA-cleared AI/ML-enabled devices and adverse

them and their relevance for error reporting in more detail below’ . An Al/
ML device may also not be robust and it can provide very different outcomes
for similarly situated patients". Further, it may perform particularly poorly
with respect to specific or rare disorders'. Finally, the device may reflect bias
for certain racial or other groups but perform well across the full population
(an instance of the well-known Simpson’s Paradox)'®. While all of these are
salient and well recognized problems that can plague AI/ML systems, none
of these issues can be well-categorized using the typical constructs that FDA
uses for reporting a device “malfunction.” We designed this study, in part, to
determine whether the existing reporting system is fit-for-purpose for
monitoring adverse events associated with medical devices incorporating
AI/ML functions. In a related study, Correia et al. examine the MAUDE
database to evaluate the sources of problems contributing to adverse event
reports. Looking at data from 2015 to 2021, they find that user errors and the
way that AI/ML devices are applied in practice are particularly likely to cause
harm. In this study, we consider a wider dataset, and we attempt to offer
concrete lessons on what makes AI/ML device problems unique (as opposed
to traditional, hardware-only medical devices) and what specifically the
FDA can do to better mitigate those problems"”.

Results

As described further in Methods, we collected data from the FDA’s medical
device adverse event reporting database (the “Manufacturer and User
Facility Device Experience” or MAUDE database). Our final dataset (which
we have made publicly available, together with all the associated code,
through the links at the end of this manuscript) comprises 823 unique
510(k)-cleared devices that could be linked to a total of 943 subsequent
adverse events reported (MDRs for short) between 2010 and 2023. The vast
majority of AI/ML device MDRs come from two products (See Fig. 1). The
first is Biomerieux’s Mass Spectrometry Microbial Identification System
(product code PEX), an automated mass spectrometer system utilizing
matrix-assisted laser technology for the identification of microorganisms
cultured from human specimens. This system is designed to provide rapid
and accurate identification of a wide range of microorganisms, and to assist
healthcare professionals in diagnosing infections and guiding appropriate
microbiology treatment plans. The second is DarioHealth’s Dario Blood
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event reports. The product code PEX corresponds to Biomerieux’s Mass Spectro-
metry Microbial Identification System, and NBW refers to Dario’s Glucose Mon-
itoring System.
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Overview of missing values in our 943 MDRs
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Note: blank or "No information" entry considered missing, whereas valid or "Not applicable" as

Fig. 2 | Proportion of missing values across key fields in medical device reports.
This chartillustrates the extent of missing information across four key fields in a total
of 943 medical device reports (MDRs) associated with AI/ML-enabled devices.

“Missing” includes blank entries or those marked as “No information,” whereas
entries marked “Not applicable” were treated as populated.

Glucose Monitoring System (product code NBW), a direct-to-consumer
software product which produces blood glucose level readings through its
smart app.

A first surprising finding is that there is an extremely high con-
centration of MDRs in such a small number of the AI/ML devices. While
one also observes concentration in MDRs for medical devices without Al/
ML functions, the concentration is not as extreme. In Supplementary
Information, we provide a figure (Supplementary Fig. 1) comparing the
market concentration, so to speak, of adverse events in AI/ML devices vs.
non AI/ML devices, as well as an associated figure (Supplementary Fig. 2)
comparing event types across AI/ML devices and non AI/ML devices. We
find that more than 98% of adverse events occurring within AI/ML devices
are borne by less than five devices. For non AI/ML devices, the corre-
sponding figure is about 85%. Meanwhile, with respect to the “event type,”
90.88% of AI/ML device reports are reported as malfunctions, whereas for
non AI/ML devices, the corresponding figure is 77.05%. Under both mea-
sures, therefore, the concentration for AI/ML devices is particularly extreme.

Most MDRs associated with the Mass Spectrometry Microbial Iden-
tification System (PEX) are reported as misidentifications of microorgan-
isms. Many of these issues appear to stem from limitations in the system’s
knowledge base, which identifies microorganisms by comparing test results
to known profiles. It is difficult to understand the true severity of these
problems from the available data. Misidentification of microorganisms can
be very dangerous, even life threatening. But from the information provided
in regulatory databases, it is hard to decipher whether the events reported
constitute this level of severity and, if they do, whether the AI/ML device is
responsible for the event. This is emblematic of more general issues, we
discuss below, as to why the current reporting structure is not fit for purpose
for evaluating AI/ML devices.

Meanwhile, for DarioHealth, the main issues reported are associated
with incorrect blood glucose level readings, at least some of which could be
interpreted as false positives. We do not intend to single out these products
as poorly performing—while they are overrepresented in the database, this
does not allow for any general conclusion about their quality. Indeed, in the
absence of data about the overall frequency of a device’s use and clarity on
the salience of problems with the device relative to other devices, it is difficult
to speculate about a device’s relative performance or safety. It may even be
the case that these products are overrepresented because the relevant

manufacturers are particularly diligent about their reporting duties and/or
quality control.

In any case, we highlight these examples to illustrate the general
character of the adverse event reports that are most represented among Al/
ML device MDRs, which is characterized by the kinds of malfunctions and
product issues that would traditionally be important in non-AI/ML devices.
These types of malfunctions are not always salient for AI/ML devices, hence
the value of the reports is limited in the context, and the burden imposed on
manufacturers may be unnecessary and/or unequal. We explain the
shortcoming of the current system in more detail below.

There are several important limitations of the current MDR system
which make it suboptimal for tracking, understanding, and correcting safety
issues that arise with AI/ML medical devices. Consistent with the patterns
described above, we now further describe the main issues identified in
the data.

Missing data

A significant concern with the current state of the MAUDE database is
simply the sheer extent of missing data within MDRs-and this is even before
one considers selection issues associated with whether adverse events are
reported at all. The problem of missing data for FDA cleared AI/ML devices
has been raised elsewhere'®, but to our knowledge no one has systematically
investigated the missing data in the MAUDE reports of AI/ML devices.

Missing data entries within the formal MDRs make it difficult to study
AI/ML medical device safety effectively from a quantitative perspective.
Figure 2, below, presents the extent of missing information for four
important indicators in the MAUDE database. Note that each of the color
coded categories below represent different ways in which data can be
missing. While they are coded differently—the result is the same.

In the analysis sample of 943 adverse event reports, data completeness
varied significantly across key variables. We consider blank or “No Infor-
mation” entries as missing data, and we consider completed or “Not
applicable” entries as populated data. Event Location is entirely missing for
all MDRs in the sample (n = 369 entries are blank, and # = 574 are marked as
“No information”). Similarly, 73% of the reports lack information about
whether the reporter was a health professional (n = 509 blank, # = 101 “No
information”). Event Date is missing in 32% of the reports (n = 298), while
Reporter Occupation is absent in 30% of cases (1 =283 blank, n=1 “Not
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applicable”). The limited data availability regarding key contextual features
of adverse events highlights potential gaps in the reporting process. Yet such
information is especially important for AI/MLmedical devices, whose per-
formance is known to be contextually sensitive—such devices’s ability to
perform as intended can deteriorate significantly in a different sub-
population or when used by different parties.

Most importantly, the extent of missing data was significantly higher in
the AI/ML sample as compared to the frequency of missing MDR infor-
mation for other medical devices. For instance, information about whether
the reporter was a health professional was missing 73% of the time in the AI/
ML sample, but only 43% in the overall sample. Similarly, Event Date and
Reporter Occupation were more likely to be missing in the AI/ML sample
(32% vs 21.9% and 30% vs 12.7%, respectively). Event Location was entirely
missing (100%) in the AI/ML sample, compared to 90.1% in the general
device sample.

Above all, these data deficiencies create difficulties for policymakers,
scholars, and manufacturers in accessing and investigating the specific
causes of adverse events related to AI/ML devices. Especially for reports
submitted by non-health professionals, the absence of key event details such
as timing, location, and reporter information would require manufacturers
to spend more time on follow-ups to gather additional details. Hence, the
overall result is an incomplete picture of the safety issues that the database is
intended to capture.

Indeed, a closer look at the MDRs reveals that in many cases, even after
self-reported extensive follow-up efforts, manufacturers struggled to obtain
more information. For example, in an NBW device report (i.e., Dar-
ioHealth’s Dario Blood Glucose Monitoring System) where both the event
location and reporter information were missing, the manufacturer Dar-
ioHealth mentioned that “the user refused to troubleshoot with Dario’s
representatives. There is not enough information available regarding Dario
meters to investigate”'”. In another report with significant information gaps,
it was similarly noted that, “multiple attempts to follow up with the user
were made, however, no response has been received to date”’. With fre-
quent missing information in the reports, it becomes challenging for
manufacturers to fully understand the context of device issues and mal-
functions, thereby limiting their ability to conduct thorough device assess-
ments and provide resolutions. Moreover, the inability to determine the
specifics of device failures, particularly for medical events involving serious
injury or death, complicates the assignment of responsibility. These data
gaps challenge the ability of both manufacturers and regulators to validate
the credibility of the reports and to determine the reporter’s level of
expertise.

In light of these challenges, it is necessary to reinforce the standardi-
zation and completeness of the current MDR data collection process. This is
of course true more generally, but in the relatively new context of AI/ML
devices, where little regulatory history exists, it is likely to be particularly
valuable for quality improvement efforts and, therefore, protecting the
public’s health. Furthermore, because there are unique concerns related to
transferability (how a model applies across contexts), domain adaptation
(how the model adapts to new contexts), and cross-dataset evaluation of AI/
ML models (the model’s robustness across different datasets), under-
standing performance of such algorithms in context is especially important.
Such improvements in data collection would not only help manufacturers
obtain more complete event information but would also facilitate effective
quantitative analysis of the reports database and enable regulators to
implement corrective measures more efficiently.

Inadequate event classification

The current database contains a significant proportion of inadequate
event classifications—events that are reported a certain way in the
database, but when one reads the qualitative description, the recorded
information does not seem to match the report, reflecting a disconnect
between the actual challenges arising in practice and the categorical
constraints of the current reporting system. According to the latest
MDR guidelines, all submitted MDRs are classified into three

Table 1| Breakdown of adverse event reports by product code
and event type

Product Codes M IN D Total
DQK 30 1 0 31
GKZ 80 1 0 81
HAW 0 1 0 1
IYN 14 1 0 15
IYO 1 0 0 1
JAK 15 1 0 16
KPR 2 0 0 2
KPS 0 1 0 1
LLZ 11 0 0 11
LNH 3 16 0 19
MUJ 43 5 0 48
MwI 2 0 0 2
NBW 231 42 0 275
NQQ 1 2 0 3
OoLoO 6 1 0 7
PEX 316 3 0 319
PJA 94 7 0 101
PRH 0 1 0 1
QAQ 7 0 0 7
QAS 1 1 0 2

n 857 84 2 943
% 90.88 8.91 0.21 100

This table presents the number of adverse event reports in our dataset (n = 943), disaggregated by
product code and event type. Event types include Malfunction (M), Injury (IN), and Death (D). The
table highlights how reports are distributed across both dimensions, with totals shown per product
code and per event type.

categories: Malfunction (M), Injury (I), and Death (D), which are
recorded under Event Type in the MAUDE database.

As seen in Table 1, the majority (91%) of device reports are categorized
as ‘Malfunction’, while only two events (0.21%) are classified as ‘Death’.
Both ‘Death’ events came from DarioHealth’s Dario Blood Glucose Mon-
itoring System (product code NBW). The FDA stipulates that an MDR
should only be classified as a death when the reporter believes that the
patient’s cause of death was or may have been attributed to the device.
However, in both death-classified reports from DarioHealth’s glucose
monitoring system, the death was reported not to be related to the device. In
one such report, on November 30, 2018, the spouse of a Dario Blood device
user called to report her husband’s death, but it was then subsequently
clarified that the death was unrelated to the device”'. Similarly, on February
6, 2019, another Dario Blood user’s husband contacted Dario to report the
user’s death; however, she noted that the user had many health complica-
tions and there was no indication the device was involved®. As such, both
“deaths” appear to be inaccurate classifications in the data, as we cannot
conclude on this basis that the deaths are causally attributable to the device.

While extreme, these cases illustrate the difficulty of accurately
reporting adverse events for medical AI/ML devices. Doing so requires
sorting out thorny issues of causality because death while using a device is
clearly quite different from death due to the device (and its malfunctioning).
Moreover, even if death could be attributed to use of the device, that would
still be different from death due to the device’s AI/ML system. Thus, given
how far removed the event is from the AI/ML functionality, there are few if
any conclusions that one can reliably draw about AI/ML device safety on the
basis of what is reported.

Similar and likely far more common inadequate event classification
issues are also evident in non-death adverse event reports. On January 18,

npj Digital Medicine | (2025)8:328


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01717-9

Article

2019, a patient performed a Heart Flow Analysis (product code PJA) in a
hospital and received a negative result. Later, the patient experienced serious
chest pain and received a CT scan, during which the previous diagnosis
result was found to be a false negative. The patient was then urgently referred
for cardiac catheterization. This event was reported as an Injury. However,
subsequent investigations by Heart Flow revealed that the false negative
result was due to an analyst’s mistake rather than a problem with the device
software itself*’. The upshot here is the same as above.

Recording the event as an “Injury” does not seem to be accurate, as the
cause of injury was not the device itself (but rather, in this case, an analyst’s
mistake). While such misattributions may also occur for other types of
medical devices, the complexity of AI/ML product use opens up a new
dimension for such user errors. What is particularly interesting is that while
one might have predicted that the ambiguity of attributing responsibility
could lead to under reporting, it appears to have led to over reporting (ie.,
Heart Flow reporting a false negative which is not due to a malfunction of its
device). Yet there is very little oversight of reporting activities, so the best that
regulators and researchers can do is take reports at face value. It would be
very useful to have an independent investigation of serious injuries or deaths
before the reports are filed so that we can conclude with more confidence
whether the device or its AI/ML functionality was related to the event. In any
case, such clear retroactive discrepancies suggest that the MDR system
might be tagging device events based on patient outcomes rather than
outcomes directly caused or potentially caused by the devices.

Relying on the event type to determine the nature of events might lead
to the misperception that the medical AI/ML device caused a death, when in
fact, that would require a much more thorough investigation. Such chal-
lenges also occur in the context of traditional devices, but in the case of A/
ML devices, they are particularly salient: AI/ML is unique because the error
can be hard to detect, and its source even harder to identify. Moreover,
whether or not something is an AI/ML error to begin with can be chal-
lenging to determine. These facets, together with the novelty of the AI/ML
products themselves and the lack of familiarity by medical professionals,
may lead to more user errors and/or to a specific type of inadequate clas-
sification of MDRs, due to lack of product knowledge. The current system,
therefore, likely generates an overall inaccurate picture of the safety of these
devices.

The preceding event classification problems revolve around some
explicitly inadequate or inaccurate statements in a report (for example,
an injury is attributed to a device when in reality the injury occurred due
to an analyst’s error). But the current environment is also susceptible to
inadequate event reporting due to, what we might call, errors of omis-
sion; however, the extent of that problem is difficult to estimate. To
explain, we provide a hypothetical example. Suppose that an AI/ML
system is incorporated into a certain piece of clinical decision support
software. And suppose further the entire product is deployed in a triage
environment. Now suppose the product is not working well, and is not
useful - in the sense that attending physicians do not find it helpful for
optimizing their workflow, or even improving their workflow, relative to
their performance without the product. In this case, the attending
physicians may simply ignore that product. But that does not mean they
will report it to the manufacturer as a malfunction, and it likewise does
not mean that the manufacturer will file an official report. Indeed, lack of
usability is not ordinarily thought of as a reportable issue. As a result, this
example depicts a situation where the environment does not incentivize
anyone to create a report that would allow researchers and regulators to
become aware of a real problem. This is the medical analogue to a
phenomenon that has been commonly observed in the context of
criminal recidivism prediction—namely, the fact that we can only
observe arrest rates, but not offense rates (i.e., we do not observe com-
mitted crimes for which the offenders are not caught)***. Likewise, we
do not observe problems that are never reported.

In addition to inadequate event classification, the MAUDE database
also contains multiple types of incomplete or inaccurate classifications that
go beyond the event field.

Severity of risk unclear or unknown

There are no indicators beyond Event Type in the MAUDE database that
precisely define the severity of reported device events. The current database
only allows an assessment of the event’s outcome but, as noted above, it
remains unclear whether and to what extent the event is related to the
specific AI/ML device. While qualitative analysis of the report narratives is
imaginable, such a project would require the use of fit-for-purpose text
analysis and is not currently feasible on a large scale. As such, a data-based
assessment of overall safety remains difficult to implement.

Moreover, the frequency of MDRs associated with a specific medical
AI/ML device is not necessarily an accurate indicator of the level of risk or
device failure. One might suspect that more reports imply a more proble-
matic device, but that is not always the case. For example, DarioHealth’s
Dario Blood Glucose Monitoring System (i.e., NBW) reports a total of 275
adverse events, according to Table 1. 231 of these were labeled as Mal-
function but many were attributed to user error rather than actual device
failure. Specifically, in one of the NBW malfunction reports, the user
mentioned that he used an expired glucose strip cartridge, which led to a
false negative result’. Another report similarly states that “the user realized
that it was his own mistake ....... [t]herefore, it can be determined that there
was misuse of the device.”” For our purposes, these additional examples of
user error suggest that there is not always a strong positive relationship
between the numerosity of reports and the risk associated with a device.
Separately, but relatedly, the salience of adverse events may differ across
device types and user profiles, both of which might drive differences in the
propensity to report problems in the first place. Finally, without an overall
“denominator” for the frequency of a medical device’s use, it is not possible
to talk about the relative safety of one product versus another”. This chal-
lenge also exists for other medical devices, but the interaction of known Al/
ML capabilities with heterogeneous user profiles may lead to differential
non-representativeness of MDRSs for these products.

As a corollary, a smaller number of reports (or their absence) does not
always imply lower product risk or severity. The WAVE Clinical Platform’s
heart rate monitors (coded as MWI) are used by healthcare professionals to
monitor patients’ waveforms, alarms, and results in real-time remotely.
According to Table 1, MWT has only two event reports, which were marked
as Malfunction. In both reports, the users noted that the MWI system failed
to send emergency alerts to the intended recipients. Although these inci-
dents did not result in severe patient outcomes, the examples emphasize that
arecurrence of these incidents could result in serious injury or death. Again,
our intention here is not to evaluate the risk or safety of specific devices
per se, but rather to point out why and how it might be difficult for regulators
and researchers to detect device-related safety issues by quantitatively
analyzing the database’s indicators without reading through specific report
narratives and in the absence of technology-appropriate categories for
reporting problems.

Problems without malfunctions are not tracked

According to the FDA, a product malfunction is an MDR reportable event if
it results in the failure of the device to perform as intended in a way which
could cause or contribute to a death or serious injury’. There are a few other
triggering conditions but in general they are tied to a device’s contribution to
death or serious injury. But many—perhaps most-problems that occur with
AI/ML devices will not rise to this level of individual injury-either in practice
or as a possibility. Indeed, many problems caused by medical AI/ML devices
may not even occur as a result of malfunction, in the ordinary sense of that
word. For example, suppose that a device predicts an 80% chance of a certain
disease for a given patient. If the patient does not actually have the disease, is
that a malfunction? Such a question is not possible to answer at an individual
patient level. After all, an 80% chance of disease implies a 20% chance of its
absence.

The only way to identify probabilistic reports as malfunctional (or not)
is to look at performance across a large group of patients. For example, if we
have 100 patients, and 30 of them have a certain disease, but the device
produces an 80% probability for every single one of them, then one might
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say the device is malfunctioning—it appears miscalibrated. But this kind of
aggregate-level malfunction would not make its way into local/individual
level adverse event reports. The adverse event reporting system is designed
at a patient/case level to identify local/individual issues, but many problems
associated with AI/ML devices will present only at an aggregate or global
level—i.e., they can be identified only by analyzing a large number of patient
data points and comparing algorithmic performance to “true” diagnoses,
outcomes, or base rates. Meanwhile, even if we could observe sub-
population performance, a further problem would be non-random differ-
ences in the distributions of device errors—for example, error rates may
differ across age, gender, ethnicity, race, etc”. This is likewise not something
that can be tracked or ascertained from the existing MAUDE reports or
MDR categories, but represents a known performance challenge for AI/ML
devices. While this is not necessarily a defect of the MAUDE database—the
MDR system was not originally designed to track such problems—it does
point to the need for rethinking how we should approach postmarket
surveillance of AI/ML devices, which we now turn to.

Discussion

There are two potential ways to move forward and improve the current
approach. The first is to consider how to improve the existing MAUDE
database by reporting on characteristics that are particularly salient to AI/
ML medical device safety (ie., improve reporting characteristics). This
includes reporting that goes beyond events which are traditionally con-
sidered as adverse events for ordinary (non AI/ML) medical devices. This is
particularly important because AI/ML devices continue to evolve after they
are brought to market’. This shift in emphasis toward post-market mod-
ifications could increase the burden on users to identify adverse events
unless there is an improvement in the reporting system. To improve the
reporting system, regulators should go beyond problems traditionally
recognized as adverse events and take a more proactive role in ensuring
device safety and usability. The second is to move beyond reporting alto-
gether and consider a different post-market regulatory scheme for AI/ML
devices. With respect to the first option, we make several suggestions about
how to improve reporting. With respect to the second option, we do not seek
to fully flesh out what substantial regulatory change might look like; rather,
we limit ourselves to a few suggestions for what a new post-market regime
could include.

We think the current reporting system could be reformed to enable
analysis of three particularly important issues for evaluating the perfor-
mance of AI/ML devices as described in'*: concept drift, covariate shift, and
algorithmic stability. These three concepts are at the root of what leads to the
kinds of problems which we characterized above, including transferability,
domain adaptation, cross-dataset evaluation, and subgroup discrepancies.

Concept drift refers to a situation in which the true joint feature/label
distribution—the distribution that the algorithm is trying to approximate—
changes slightly over time™'. Another way to put it is that the relationship
between inputs and outputs changes as the AI/ML system is deployed. The
problem is well-known in the machine learning literature, and it is parti-
cularly salient in healthcare where we have massive amounts of data arriving
continuously. For example, an AI/ML-based admission triage tool may be
tested on a sample corresponding to a general healthcare environment, but
then deployed in managing ICU queues. Or it may even be developed for an
ICU unit in one sub-population, but then be deployed in a different sub-
population, where the relationship between patient characteristics and
health outcomes is not the same. For instance, by some measures the most
prevalent chronic conditions for adults in New York State are high cho-
lesterol and hypertension whereas in California they are obesity and heart
disease. A tool that is initially deployed in New York but then adapted to
California may be subject to concept drift. There is currently no means by
which such issues could be reported in FDA’s system as they do not con-
stitute an adverse event for reporting purposes. This is a problem that is
distinctive, if not unique, to AI/ML medical devices.

How might the system do better at collecting data relevant to this issue?
Reporting requirements could be modified so as to require, for instance, that

for every AI/ML medical device, manufacturers must flag both when
training data is significantly updated and when deployment conditions are
substantially amended. There is of course some vagueness in what con-
stitutes a substantial amendment, but as with current reporting practices,
manufacturers could err on the safe side (i.e., in favor of being over inclusive
in their reports). How often should such reports be made to regulators?
While this is flexible, the FDA is currently updating MAUDE every three
months and this could be a reasonable timeline: that is, manufacturers could
submit a deployment conditions update quarterly, if changes are made
within the previous three months. A further question is who should pre-
define benchmarks and performance metrics, the manufacturer or the
FDA? We would encourage the FDA to issue recommendations to industry
in the form of a draft guidance and seek their input; as they have done in
defining performance and transparency metrics in the context of the total
product life cycle (TPLC) approach (48).

Covariate shift refers to a situation in which the feature distribution
alone changes''. This could occur if the training or early use data was not
representative”’, but it could happen for other reasons as well. As an
extreme case, consider a situation where an AI/ML medical device such as
Dario Health’s Dario Blood Glucose Monitoring System is trained on a
sample of (high-risk for diabetes) obese younger men and then applied to a
sample of (high risk for diabetes) non-obese older men. The distribution of
diabetes among both groups could well be the same (ie., the label dis-
tribution does not change) but the feature distribution is very different.
Where this occurs, it can cause the performance of the algorithmic system to
deteriorate gradually unless the manufacturer identifies the change and
adapts to it. As above, there is currently no way to report such a phenom-
enon in the MAUDE database—the change in the feature distribution with
respect to correlates of diabetes is not an “adverse event”. But the MAUDE
database could be modified so as to encourage reports of issues encountered
during such adaptive changes, so that hospitals, physicians, patients and
other stakeholders are aware of how and where the device was initially
developed and what genealogical changes relevant to its safety have since
occurred. Further, such reports could help manufacturers improve labeling
information and use/deployment training and education. To implement
these changes, the same scheme as described above could be implemented—
i.e., every three months a deployment conditions report is submitted if new
information becomes available in the preceding quarter—indeed, the
manufacturer could address both concept drift and covariate shift in one
report. It is also worth noting that the feature distribution could change
without manufacturers’ knowledge of it; while this is inevitable, the best we
can do is to encourage reporting of known changes and likewise to
encourage monitoring and investigation to quickly identify changes.

Another important property for AI/ML medical devices to satisfy is to
produce similar outputs for similarly situated patients—we refer to this
property as algorithmic stability'. This is similar to a “treat like cases alike”
desideratum in the law, whereas in computer science it is referred to as the
Lipschitz Property, which technically requires that for a given distance
between two observations in the feature space, their distance should be
similarly bounded in the output space. This sort of stability or robustness is
especially important for AI/ML medical devices because we expect patients
with similar characteristics to receive similar treatments of diagnoses. For
example, consider a situation where a skin cancer screening device is
implemented through a deep learning model which focuses on areas of large
contract between a mole and the surrounding skin—so that paler patients
are far more likely to have benign moles falsely classified as malignant. If we
assume that the model has latched onto a property which is not medically
more indicative of skin cancer, then two patients who are very similar in all
the medically relevant characteristics can get very different skin cancer
diagnoses. This is an instance of well-known adversarial robustness pro-
blems, but we have applied it to the medical context in particular.

Likewise, algorithmic stability can reveal itself in subgroup problems—
the same kind of example that we gave above could give rise to racial
differences in the algorithm’s performance which do not correspond to any
underlying meaningful medical differences. Of course, sometimes there can
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be differences in disease distribution across racial categories, but algorithmic
instability occurs where performance characteristics vary by race even in
cases where the disease distribution is identical across race. Reporting on
algorithmic stability will require requirements that are a little bit different
from concept drift and covariate shift, as described above, because this is
something that can happen at patient level, rather than at population level.
However, in order to identify algorithmic instability, we need at a minimum
a pairwise comparison of two similar patients. This is not something that can
be identified for one patient alone—hence it is again not a “traditionally
reportable” adverse event. Nonetheless, with a small change in reporting
requirements, as suggested above, whereby manufacturers are required to
submit a quarterly performance update, such instabilities can be identified
by encouraging manufacturers to check explicitly for instability, including
by making some pairwise comparisons of patients, as well as attempting to
identify vulnerabilities—through, for example, auditing methods such as
seeking out adversarial attacks'‘—and this can potentially be incorporated
into subsequent device labelling and training information.

Beyond the problems described above, there are a number of other data
reporting quality improvements that could be made if regulators like the
FDA decide to adopt our approach of requiring periodic updates. Most of
these reflect problems which have been discussed above. To address the
extent of missing data, regulators may want to push for better quality control
of the reports. Inadequate event classifications can be almost entirely
eliminated in this way. Incomplete and inaccurate classifications can be
more difficult to deal with; however, they can be minimized through better
oversight and due diligence. Finally, disparities in subgroup performance,
previously recognized as underreported’, can in part be tackled by
requesting assessments of model performance across different demographic
and socioeconomic characteristics.

One particularly interesting issue, however, is the role of human error.
Our qualitative analysis of the adverse event reports highlights that many
reports which are coded as algorithmic malfunctions were actually techni-
cian or analyst errors. However, the current adverse event reporting data-
base does not track the distribution of analyst or technician errors, nor does
it attempt to track the relationship between human factors and the AI/ML
device. For example, suppose we have a diagnostic system for predicting
diabetes risk, which outputs the log odds that a patient is at high risk for
diabetes. This is fairly standard, since for example within a logistic model the
log odds are a linear function of the predictors. However, most people will
have trouble translating log odds to a probability. This could cause frequent
errors in the diagnosis of diabetes even though the algorithm is not mal-
functioning and there is no adverse event to be reported, even if we
understand that term broadly. This problem highlights the fact that some
issues which arise in the operation of AI/ML devices, including those dis-
cussed above, may be difficult to adequately address in the current model of
database reporting even with changes. And that points to another possible
way forward—namely, a more substantial revision of the regulatory
approach, which we turn to next.

Thus far, we have discussed how to improve reporting and analysis of
AI/ML errors within the existing MAUDE database framework. A more
radical change would be to move beyond database-centric reporting. Since
the problems associated with AI/ML devices can be quite difficult to capture
in static adverse event reports, as described above, regulators may want to
consider a different public health governance regime altogether. For
example, Gerke argues in favor of “nutrition label” style reporting for AI/ML
medical devices’. This is a valuable suggestion. Indeed, the Office of the
National Coordinator for Health Information Technology (ONC) within
the U.S. Department of Health and Human Services (HHS) has recently
finalized a rule for predictive decision support interventions that are part of
certified health, which would require such nutrition label style “model
cards.” FDA could consider adopting this approach for AI/ML devices.
Nutrition style labeling could help disentangle analyst error from device
error; and such labels could disclose which sub-populations the AI/ML tool
was trained and tested on. Labeling can inform analysts how to use the
device, and hence reduce analyst error massively (note that analyst error is a

frequent cause of adverse event reports in the MAUDE database). Moreover,
labeling can disclose the demographic breakdowns of the testing population
characteristics. Currently, most legally marketed devices do not disclose
such characteristics'. Indeed, many authors have called for increased dataset
diversity’’ and such a regulatory approach would “build in” a mechanism for
transparent reporting.

While a label cannot, by hypothesis, report when an evolutionary
feature such as concept drift has occurred, it can warn users of the device
about the possibility of concept drift when they apply the device in a new
environment. For example: if the label makes it clear that a diagnostic device
was tested on caucasian men between 35 and 49 years of age living in New
York, then one can surmise that applying it to young black women in
California could lead to deteriorated performance.

While nutrition style labels can be quite helpful, they can function even
better if they are integrated into an environment of ongoing/regular
reporting, as described in Ref. 34. Their system view approach envisions a
cooperative and continuous reporting regime wherein the device manu-
facturers, users (i.e., hospitals and physicians), as well as policymakers treat
the AI/ML device not as an isolated tool, but rather as one part of a larger
care environment. This approach can encourage constructive dialogue:
manufacturers can provide continuous updates; physicians may undergo
regular training; and regulators may update both database disclosures and
nutrition style labels. Indeed, the FDA’s proposed Total Product Lifecycle

35,36

Regulatory Approach is developed in this spirit
Methods

We collected data from the FDA’s medical device adverse event reporting
database (the “Manufacturer and User Facility Device Experience” or
MAUDE database). Data were gathered from FDA’s downloadable 510(k)
files”, restricting to medical devices approved from 2010 through 2023,
inclusive. This includes both Class I and II Premarket Notification
(“510(k)”) devices and De Novo classification requests for low to moderate
risk medical devices. These devices represent over 98% of all FDA device
market authorizations over the same period and all but two of the 882
devices that the FDA had classified as AI/ML devices over the period
of study.

We calculated the number of adverse events within pre-defined
timeframes post-approval (3, 6, 9, 12, 24 months) using the FDA’s Medical
Device Reporting (MDR) system”, and flagging mandatory (i.e., more
serious) adverse event reports. Additionally, we created a flag for all devices
included in the FDA’s Artificial Intelligence and Machine Learning (Al/
ML)-Enabled Medical Devices list*. Using NyquistAT's database, we also
flagged all devices that contained the term “software” in their device ID,
device name, indications for use, or device summary file in order to establish
arelevant set of digital/digitally-enabled devices. Our final dataset comprises
823 unique 510(k)-cleared devices that could be linked to a total of
943 subsequent adverse events reported (MDRs for short) between 2010 and
2023. This dataset tracks 54 features related to the reported events and
device manufacturers. These features include the type of event, the setting
where it occurred, the associated manufacturer and product, and so forth.
Within the 943 linked MDRs, there are 20 unique medical device product
codes (i.e., unique types of medical devices). A product code is a three-letter
identifier assigned by the FDA’s Center for Devices and Radiological Health
(CDRH) or certain devices regulated by the Center for Biologics Evaluation
and Research (CBER). This code serves to internally classify and track
medical devices by linking a device type with its designated product clas-
sification for a specific application. These codes, along with device names
and attributes, are assigned by CDRH to facilitate regulatory processes. We
have provided links to both our complete dataset and the associated STATA
code for reproducing the full analysis at the end of this manuscript.

Conclusion

In sum, this study closely considers the FDA’s MAUDE database, focusing
in particular on adverse event reports associated with AI/ML-based medical
devices that received marketing authorization from 2010 through 2023. We
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find the MAUDE database to be significantly lacking in its informational
value: among the features chosen for reporting, there is substantial missing
data (some columns are missing entirely). For variables that are not missing,
the information included is often inaccurate, vague, or misleading. Mean-
while, the most significant risks associated with AI/ML devices—for
example, those stemming from the nature, size, location, and representa-
tiveness of the models’ training and validation data—are not reported at all.
We have described these problems and made two sets of suggestions. The
first contains recommendations for improving the relevance of the MAUDE
database for AI/ML devices. The second includes recommendations for
moving beyond the MAUDE database and reimagining transparent post-
market surveillance of AI/ML products in the absence of individual event-
based reporting.

Data availability

The datasets analyzed in this study are publicly available at https://github.
com/melificient/medAl The repository includes two Stata 18 datasets,
created on January 29,2025: 823_fda_devices_withAEs.dta: A dataset of 823
unique 510(k)-cleared medical devices approved by the FDA between 2010
and 2023, identified as incorporating Artificial Intelligence and/or Machine
Learning technologies. 943_AEs_for_fda_devices.dta: A corresponding
dataset of 943 adverse event reports (Medical Device Reports, or MDRs) for
the above devices, covering the same time period. There are no restrictions
on the use of these datasets.

Code availability

All custom code used for dataset creation, cleaning, and analysis was
developed in Stata 18 and is publicly available at https://github.com/
melificient/medAl The primary script, create_MedAI_datasets.do, relies on
input files located in the raw/ subdirectory. No proprietary code was used.
The provided do file enables full reproduction of the datasets generation.
There are no access restrictions to the code.
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