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Beware Explanations from AI
in Healthcare
Benefits of explainable AI are not what they appear
By Boris Babic1, 2, Sara Gerke3, 4, Theodoros Evgeniou2, I. Glenn Cohen5†*

Artificial intelligence and machine
learning (AI/ML) algorithms are
increasingly developed in healthcare for
diagnosis and treatment of a variety of
medical conditions (1). However, despite
the technical prowess of such systems,
their adoption has been challenging,
and whether and how much they will
actually improve healthcare remains to
be seen. A central reason for this is that
the effectiveness of AI/ML-based
medical devices depends largely on the
behavioral characteristics of its users,
who, for example, are often vulnerable
to well-documented biases or
algorithmic aversion (2). Many
stakeholders increasingly identify the
so-called black-box nature of predictive
algorithms as the core source of users’
skepticism, lack of trust, and slow
uptake (3, 4). As a result, lawmakers
have been moving in the direction of
requiring the availability of explanations
for black-box algorithmic decisions (5).
Indeed, a near-consensus is emerging
in favor of explainable AI/ML among
academics, governments, and civil
society groups. Many are drawn to this
approach in order to both harness the
accuracy benefits of non-interpretable
AI/ML such as deep learning or neural
nets, while also supporting
transparency, trust and adoption. We
argue that this consensus, at least as
applied to healthcare, both overstates
the benefits and undercounts the
drawbacks of requiring black-box
algorithms to be explainable.

EXPLAINABLE VS. INTERPRETABLE
It is important to first distinguish
explainable from interpretable AI/ML.
These are two very different types of
algorithms with different ways of dealing
with the problem of opacity—that AI

predictions generated from a black box
undermine trust, accountability, and
uptake of AI.
A typical AI/ML task requires
constructing an algorithm that can take
a vector of inputs (for example, pixel
values of a medical image) and
generate an output pertaining to, say,
disease occurrence (for example,
cancer diagnosis). The algorithm is
trained on past data with known labels,
which means that the parameters of a
mathematical function that relate the
inputs to the output are estimated from
that data. When we refer to an algorithm
as a “black box,” we mean that the
estimated function relating inputs to
outputs is not understandable at an
ordinary human level (due to, for
example, the function relying on a large
number of parameters, complex
combinations of parameters, or
nonlinear transformations of
parameters).
Interpretable AI/ML (which is not the
subject of our main criticism) does
roughly the following: Instead of using a
black-box function, it uses a transparent
(“white-box”) function that is in an
easy-to-digest form. For example, a
linear model whose parameters
correspond to additive weights relating
the input features and the output, or a
classification tree that creates an
intuitive rule-based map of the decision
space. Such algorithms have been
described as intelligible (6) and
decomposable (7). The interpretable
algorithm may not be immediately
understandable by everyone (even a
regression requires a bit of background
on linear relationships, for example, and
can be misconstrued). However,
interpretable AI/ML algorithms’ main
selling point is that they are open,
transparent, and capable of being
understood with reasonable effort.
Accordingly, some scholars argue that
under many conditions only
interpretable algorithms should be used,
especially when they are used by
governments for distributing burdens

and benefits (8). However, requiring
interpretability would create an
important change to machine learning
as it is being done today—essentially
that we forgo deep learning altogether
and whatever benefits it may entail.
Explainable AI/ML is very different, even
though both approaches are often
grouped together. Explainable AI/ML,
as the term is typically used, does
roughly the following: given a black-box
model that is used to make predictions
or diagnoses, a second explanatory
algorithm finds an interpretable function
that closely approximates the outputs of
the black box. This second algorithm is
trained by fitting the predictions of the
black box and not the original data, and
it is only used to develop the post-hoc
explanations for the black-box outputs,
not to make actual predictions as it is
typically not as accurate as the black
box. The explanation might, for
instance, be given in terms of which
attributes of the input data in the
black-box algorithm matter most to a
specific prediction, or it may offer an
easy to understand linear model that
gives similar outputs as the black-box
algorithm for the same given inputs (4).
Other models, such as so-called
counterfactual explanations or
heatmaps, are also possible (9, 10). In
other words, explainable AI/ML
ordinarily finds a white box that partially
mimics the behavior of the black box,
which is then used as an explanation of
the black-box predictions.
Three points are important to note: First,
the opaque function of the black box
remains the basis for the AI/ML
decisions, as it is typically the most
accurate one. Second, the white box
approximation to the black box cannot
be perfect since, if it were, there would
be no difference between the two. It is
also not focusing on accuracy but on
fitting the black box, often only locally.
Finally, the explanations provided are
post-hoc. This is unlike interpretable
AI/ML, where the explanation is given
using the exact same function that is
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responsible for generating the output
and is known and fixed ex-ante for all
inputs.
A substantial proportion of AI/ML-based
medical devices that have so far been
cleared or approved by the FDA use
non-interpretable black-box models,
such as deep learning (1). This may be
because black-box models are deemed
to perform better in many healthcare
applications, which are often of
massively high dimensionality, such as
image recognition or genetic prediction.
Whatever the reason, to require an
explanation of black-box AI/ML systems
in healthcare at present entails using
post-hoc explainable AI/ML models, and
this is what we caution against here.

LIMITS OF EXPLAINABILITY
Explainable algorithms have been a
relatively recent area of research and
much of the focus of tech companies
and researchers has been on the
development of the algorithms
themselves—the engineering—and not
on the human factors affecting the final
outcomes. The prevailing argument for
explainable AI/ML is that it facilitates
user understanding, builds trust, and
supports accountability (3, 4).
Unfortunately, current explainable AI/ML
algorithms are unlikely to achieve these
goals—at least in healthcare—for
several reasons.

Ersatz understanding
Explainable AI/ML (unlike interpretable
AI/ML) offers post-hoc algorithmically
generated rationales of black-box
predictions, which are not necessarily
the actual reasons behind those
predictions, or related causally to them.
Accordingly, the apparent advantage of
explainability is a “fool’s gold” because
post-hoc rationalizations of a black box
are unlikely to contribute to our
understanding of its inner workings.
Instead, we are likely left with the false
impression that we understand it better.
We call the understanding that comes
from post-hoc rationalizations ersatz
understanding. And unlike interpretable
AI/ML where one can confirm the quality
of explanations of the AI/ML outcomes
ex ante, there is no such guarantee for
explainable AI/ML. It is not possible to
ensure ex ante that for any given input
the explanations generated by
explainable AI/ML algorithms will be
understandable by the user of the
associated output. By not providing

understanding in the sense of opening
up the black box, or revealing its inner
workings, this approach does not
guarantee to improve trust and allay any
underlying moral, ethical, or legal
concerns.
There are some circumstances where
the problem of ersatz understanding
may not be an issue. For example,
researchers may find it helpful to
generate testable hypotheses through
many different approximations to a
black-box algorithm in order to advance
research or improve an AI/ML system.
But this is a very different situation from
regulators requiring AI/ML-based
medical devices to be explainable as a
precondition of their marketing
authorization.

Lack of robustness
For an explainable algorithm to be
trusted, it needs to exhibit some
robustness. By this, we mean that the
explainability algorithm should ordinarily
generate similar explanations for similar
inputs. However, for a very small
change in input (for example, in a few
pixels of an image), an approximating
explainable AI/ML algorithm might
produce very different and possibly
competing explanations (see Figure),
with such differences not being
necessarily justifiable or understood
even by experts. A doctor using such an
AI/ML-based medical device would
naturally question an algorithm.

Tenuous connection to accountability
It is often argued that explainable AI/ML
supports algorithmic accountability. If the
system makes a mistake, the thought
goes, it will be easier to retrace our
steps and delineate what led to the
mistake and who is responsible. While
this is generally true of interpretable
AI/ML systems, which are transparent
by design, it is not true of explainable
AI/ML systems because the
explanations are post-hoc rationales,
which only imperfectly approximate the
actual function that drove the decision.
In this sense, explainable AI/ML
systems can serve to obfuscate our
investigation into a mistake rather than
help us to understand its source. The
relationship between explainability and
accountability is further attenuated by
the fact that modern AI/ML systems rely
on multiple components, each of which
may be a black box in and of itself,
thereby requiring a fact finder or
investigator to identify, and then

combine, a sequence of partial post-hoc
explanations. Thus, linking explainability
to accountability may prove to be a red
herring.

THE COSTS OF EXPLAINABILITY
Explainable AI/ML systems are not only
unlikely to produce the benefits usually
touted of them, but they also come with
additional costs (as compared to
interpretable systems or to using
black-box models alone without
attempting to rationalize their outputs).

Misleading in the hands of imperfect
users
Even when explanations seem credible,
or nearly so, when combined with prior
beliefs of imperfectly rational users, they
may still drive the users further away
from a real understanding of the model.
For example, the average user is
vulnerable to narrative fallacies, where
users combine and reframe
explanations in misleading ways. The
long history of medical reversals, the
discovery that a medical practice did not
work all along, either failing to achieve
its intended goal or carrying harms that
outweighed the benefits, provides
examples of the risks of narrative fallacy
in healthcare. Relatedly, explanations in
the form of deceptively simple post-hoc
rationales can engender a false sense
of (over-)confidence. This can be further
exacerbated through users’ inability to
reason with probabilistic predictions,
which AI/ML systems often provide (11),
or the users’ undue deference to
automated processes (2). All of this is
made more challenging because
explanations have multiple audiences,
and it would be difficult to generate
explanations that are helpful for all of
them.

Underperforming in at least some
tasks
If regulators decide that the only
algorithms which can be marketed are
those whose predictions can be
explained with reasonable fidelity, they
thereby limit the system’s developers to
a certain subset of AI/ML algorithms. For
example, highly nonlinear models which
are harder to approximate in a
sufficiently large region of the data
space may thus be prohibited under
such a regime. This will be fine in cases
where complex models—like deep
learning or ensemble methods—do not
particularly outperform their simpler
counterparts (characterized by fairly
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structured data and meaningful features,
such as predictions based on relatively
few patient medical records) (8). But in
others, especially in cases with
massively high dimensionality—such as
image recognition or genetic sequence
analysis—limiting oneself to algorithms
that can be explained sufficiently well
may unduly limit model complexity and
undermine accuracy.

BEYOND EXPLAINABILITY
If explainability should not be a strict
requirement for AI/ML in healthcare,
what then? Regulators like the FDA
should focus on those aspects of the
AI/ML system that directly bear on its
safety and effectiveness. In particular:
How does it perform in the hands of its
intended users? To accomplish this,
regulators should place more emphasis
on well-designed clinical trials, at least
for some higher-risk devices, and less
on whether the AI/ML system can be
explained (12). So far, most
AI/ML-based medical devices have
been cleared by the FDA via the 510(k)
pathway, requiring only that substantial
equivalence to a legally marketed
(predicate) device be demonstrated,
without usually requiring any clinical
trials (13).
Another approach is to provide
individuals added flexibility when they
interact with a model—for example, by
allowing them to request AI/ML outputs
for variations of inputs or with additional
data. This encourages buy-in from the
users and reinforces the model’s
robustness, which we think is more
intimately tied to building trust. This is a
different approach to providing insight
into a model’s inner workings. Such
interactive processes are not new in
healthcare, and their design may
depend on the specific application. One
example of such a process is the use of
computer decision aids for shared
decision-making for antenatal
counseling at the limits of gestational
viability. A neonatologist and the
prospective parents might use the
decision aid together in such a way to
show how various uncertainties will
affect the “risk:benefit ratios of
resuscitating an infant at the limits of
viability” (14). This reflects a
phenomenon for which there is growing
evidence—that allowing individuals to
interact with an algorithm reduces
“algorithmic aversion” and makes them
more willing to accept the algorithm’s
predictions (2).

From healthcare to other settings
Our argument is targeted particularly to
the case of healthcare. This is partly
because healthcare applications tend to
rely on massively high dimensional
predictive algorithms where loss of
accuracy is particularly likely if one
insists on the ability of good black-box
approximations with simple enough
explanations, and expertise levels vary.
Moreover, the costs of misclassifications
and potential harm to patients are
relatively higher in healthcare compared
to many other sectors. Finally,
healthcare traditionally has multiple
ways of demonstrating the reliability of a
product or process, even in the absence
of explanations. This is true of many
FDA-approved drugs. We might think of
medical AI/ML as more like a credence
good, where the epistemic warrant for
its use is trust in someone else rather
than an understanding of how it works.
For example, many physicians may be
quite ignorant of the underlying clinical
trial design or results that led the FDA to
believe that a certain prescription drug
was safe and effective, but their
knowledge that it has been
FDA-approved and that other experts
further scrutinize it and use it supplies
the necessary epistemic warrant for
trusting the drug. But insofar as other
domains share some of these features,
our argument may apply more broadly
and hold some lessons for regulators
outside healthcare as well.

When interpretable AI/ML is
necessary
Healthcare is a vast domain. Many
AI/ML predictions are made to support
diagnosis or treatment. For example,
biofourmis’s RhythmAnalytics is a deep
neural network architecture trained on
electrocardiograms to predict over 15
types of cardiac arrhythmias (15). In
cases like this, accuracy matters a lot,
and understanding is less important
when a black box achieves higher
accuracy than a white box. Other
medical applications, however, are
different. For example, imagine an
AI/ML system which uses predictions
about the extent of a patient’s kidney
damage in order to determine who will
be eligible for a limited number of
dialysis machines. In cases like this,
when there are overarching concerns of
justice— i.e., concerns about how we
should fairly allocate
resources—ex-ante transparency about

how the decisions are made can be
particularly important or required by
regulators. In such cases, the best
standard would be to simply use
interpretable AI/ML from the outset, with
clear predetermined procedures and
reasons for how decisions are taken. In
such contexts, even if interpretable
AI/ML is less accurate, we may prefer to
trade-off some accuracy, the price we
pay for procedural fairness.

CONCLUSION
We argue that the current enthusiasm
for explainability in healthcare is likely
overstated: Its benefits are not what
they appear, and its drawbacks are
worth highlighting. For health
AI/ML-based medical devices at least, it
may be preferable not to treat
explainability as a hard and fast
requirement but to focus on their safety
and effectiveness. Healthcare
professionals should be wary of
explanations they are provided for
black-box AI/ML models. Healthcare
professionals should strive to better
understand AI/ML systems to the extent
possible and educate themselves about
how AI/ML is transforming the
healthcare landscape, but requiring
explainable AI/ML seldom contributes to
that end.
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Fig. 1. Example of an algorithm generating
competing locally accurate explanations.
In the figure below, the black-box model’s
estimated function is represented by the black
curve tracking the blue-green boundary. The
explainability algorithm constructs, for a given
input, a linear local approximation (the solid red
line), which generates similar predictions for
nearby instances, but not everywhere. The
dashed red line represents an alternative
explainable model used for explanations for
nearby inputs. But we can see how different the
models are from each other, and so too are the
explanations that they provide for similar inputs.
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