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ABSTRACT

Explainability in artificial intelligence and machine learning

(“AI/ML”) is emerging as a leading area of academic research and a

topic of significant regulatory concern. Indeed, a near-consensus exists

in favor of explainable AI/ML among academics, governments, and

civil society groups. In this project, we challenge this prevailing trend.

We argue that for explainability to be a moral requirement – and even

more so for it to be a legal requirement – it should satisfy certain

desiderata which it currently does not, and possibly cannot. In

particular, we will argue that the currently prevailing approaches to

explainable AI/ML are (1) incapable of guiding our action and

planning, (2) incapable of making transparent the actual reasons

underlying an automated decision, and (3) incapable of underwriting

normative (moral/legal) judgments, such as blame and resentment.

This stems from the post hoc nature of the explanations offered by

prevailing explainability algorithms. We will explain that these

algorithms are “insincere-by-design,” so to speak. And this renders

them of very little value to legislators or policymakers who are

interested in (the laudable goal of) transparency in automated decision

making. There is, however, an alternative – interpretable AI/ML –

which we will distinguish from explainable AI/ML. Interpretable

AI/ML can be useful where it is appropriate, but represents real

tradeoffs and in some instances (in medicine and elsewhere) adopting

an interpretable AI/ML may mean adopting a less accurate AI/ML. We

argue that it is better to face those trade-offs head on, rather than

embrace the fool’s gold of explainable AI/ML.
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INTRODUCTION

From cars, to cardiology, to Chat GPT-4 our world is

increasingly being shaped by Artificial Intelligence (AI) and even more

specifically the sub-type of AI known as Machine Learning (ML). As

algorithmic decision making systems relying on AI/ML models become

more prominent across the legal, commercial and medical landscape,
1

there is an increasingly vocal push by policymakers to require that

these algorithms be more explainable.
2

For example, many scholars

argue that the EU General Data Protection Regulation (2016/679)
3

contains a “right to explanation” for algorithmically generated

decisions.
4

Likewise, a major piece of Canadian legislation known as

Bill C-27,
5

or the Digital Charter Implementation Act, 2022, would

require organizations using an “automated decision making system” to

provide an explanation of its prediction when requested by a

significantly impacted individual.
6

Notably for our project, the

Canadian bill explicitly states that an explanation must include “the

reasons or principal factors that led to the prediction.”
7

We will return

to why reason giving is such an important idea below. Turning to the

United States, while it has tracked behind the EU and Canada in

digital regulation, the White House Office of Science and Technology

Policy’s “Blueprint for an AI Bill of Rights,”
8

released on October 4,

8
Alondra Nelson et al., Blueprint for an AI Bill of Rights: A Vision for Protecting Our Civil Rights

in the Algorithmic Age, WHITE HOUSE OFF. SCI. & TECH. POL’Y (Oct. 4, 2022),

7
Id. § 63(4) (emphasis added).

6
Bill C-27, supra note 5, §§ 63(3), 63(4).

5
Bill C-27, 44th Parliament, 1st Sess. (Canada 2022),

https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading; Jennifer R. Davidson et al.,

Bill C-27, Proposed Amendments to Canada’s Federal Privacy Legislation Affecting Private Sector

Organizations, 35 INTELL. PROP. J. 71 (2022).

4
Bryce Goodman & Seth Flaxman, European Union Regulations on Algorithmic Decision-making

and a “Right to Explanation,” ARXIV (Aug. 31, 2016), https://arxiv.org/abs/1606.08813; Andrew D.

Selbst & Julia Powles, Meaningful Information and the Right to Explanation, 7 INT’L DATA PRIV.

L. 233, 234 (2017). However, not all scholars agree that the GDPR entails a requirement that

decision making algorithms be explainable. See Sandra Wachter et al., Why a Right to

Explanation of Automated Decision-Making Does Not Exist in the General Data Protection

Regulation, 7 INT’L DATA PRIV. L. 76 (2017); Margot E. Kaminski, The Right to Explanation,

Explained, 34 BERKELEY TECH. L.J. 189 (2019); Sara Gerke et al., Ethical and Legal Challenges of

Artificial Intelligence-Driven Healthcare, in ARTIFICIAL INTELLIGENCE IN HEALTHCARE 295, 301

(Adam Bohr & Kaveh Memarzadeh eds., 2020).

3
Council Regulation 2016/679, 2016 O.J. (L 119) 1.

2
E.g., Algorithmic Accountability Act of 2022, H.R. 6580, 117th Cong. (2022); see Edmund L.

Andrews, Congress Gets Serious About Artificial Intelligence, STAN. UNIV. HUMAN-CENTERED A.I.

(Mar. 8, 2021), https://hai.stanford.edu/news/congress-gets-serious-about-artificial-intelligence.

1
Andrew Guthrie Ferguson, Illuminating Black Data Policing, 15 OHIO ST. J. CRIM. L. 503,

504–09 (2018) (policing); Arthur Rizer & Caleb Watney, Artificial Intelligence Can Make Our Jail

System More Efficient, Equitable, and Just, 23 TEX. REV. L. & POL. 181, 195 (2018) (pretrial

detention); Cary Coglianese & Lavi M. Ben Dor, AI in Adjudication and Administration, 86

Brook. L. Rev. 791, 802–04 (2021) (sentencing and parole); Sofia Ranchordás, Empathy in the

Digital Administrative State, 71 DUKE L.J. 1341, 1359–60 (2022) (administration); Ashley S.

Deeks, Predicting Enemies, 104 VA. L. REV. 1529, 1547 (2018) (warfare); William Magnuson,

Artificial Financial Intelligence, 10 HARV. BUS. L. REV. 337, 349–50 (2020) (credit ratings); id. at

350–51 (fraud detection); id. at 351 (investment); Ifeoma Ajunwa, An Auditing Imperative for

Automated Hiring Systems, 34 HARV. J.L. & TECH. 621, 623 (2021) (hiring); Dana Remus & Frank

Levy, Can Robots Be Lawyers? Computers, Lawyers, and the Practice of Law, 30 GEO. J. LEGAL

ETHICS 501, 512–29 (2017) (legal practice); George Maliha, Sara Gerke, I. Glenn Cohen & Ravi B.

Parikh, Artificial Intelligence and Liability in Medicine, 99 MILBANK Q. 629, 629–30 (2021)

(medicine).
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2022, mirrors the proposed Canadian digital charter of rights and

freedoms by including, among other things, an anticipated

requirement for “notice and explanation” of algorithmic decisions.

While it is unclear what the notice and explanation requirement

would entail, the authors of the blueprint state that the purpose of the

notice and explanation is to allow one to understand “how and why [an

automated system] contributes to outcomes that impact you.”
9

It

seems plausible that providing the requisite notice and explanation

would require the proprietors of automated decision making systems

to produce reasons or factors for why certain decisions were made the

way they were, and that these factors should be transparent enough to

allow for a review of the decision.
10

This trend has not gone unnoticed by academics, many of

whom champion the importance of transparency. For example, some

authors argue that algorithmic decision making “gives rise to a right

to explanation.”
11

Sandra Wachter, while maintaining that the GDPR

does not in general give rise to a right to explanation, believes the law

should incorporate indirect ways of providing explanations without

“opening the black box.”
12

Indeed, “a near-consensus is emerging in

favor of explainable AI/ML among academics, governments, and civil

society groups.”
13

There is now a very large literature on explainable

13
Boris Babic, Sara Gerke, Theodoros Evgeniou & I. Glenn Cohen, Beware Explanations from AI

in Health Care, 373 SCIENCE, art. no. abg1834, 2021; for examples of techniques used to render AI

explainable, see Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin, “Why Should I Trust

You?”: Explaining the Predictions of Any Classifier, Proc. 22nd ACM SIGKDD INT’L CONF. ON

KNOWLEDGE DISCOVERY & DATA MINING (Aug. 2016), at 1135,

https://doi.org/10.1145/2939672.2939778; Scott Lundberg & Su-In Lee, A Unified Approach to

Interpreting Model Predictions, PROC. 31ST INT’L CONF. ON NEURAL INFO. PROCESSING SYS. (Dec.

2017), https://dl.acm.org/doi/10.5555/3295222.3295230; Cynthia Rudin & Joanna Radin, Why Are

We Using Black Box Models in AI When We Don’t Need To? A Lesson from an Explainable AI

Competition, 1 HARV. DATA SCI. REV., art. no. 2, 2019, https://doi.org/10.1162/99608f92.5a8a3a3d.

12
Sandra Wachter et al., Counterfactual Explanations Without Opening the Black Box:

Automated Decisions and the GDPR, 31 HARV. J.L. & TECH. 841 (2018); see also Ashley Deeks,

The Judicial Demand for Explainable Artificial Intelligence, 119 Colum. L. Rev. 1829, 1835–37

(2019), Katherine J. Strandburg, Rulemaking and Inscrutable Automated Decision Tools, 119

Colum. L. Rev. 1851, 1863–64 (2019). But see Cynthia Rudin, Stop Explaining Black Box Machine

Learning Models for High Stakes Decisions and Use Interpretable Models Instead, 1 NATURE

MACH. INTEL. 206 (2019).

11
Tae Wan Kim & Bryan R. Routledge, Why a Right to an Explanation of Algorithmic

Decision-Making Should Exist: A Trust-Based Approach, 32 BUS. ETHICS Q. 75, 75 (2022).

10
In US administrative law, for example, while reviewing courts often give wide deference to

agency decisions, see Baltimore Gas & Elec. Co. v. Nat. Res. Def. Council, Inc., 462 U.S. 87, 103

(1983); cf. Chevron, U.S.A., Inc. v. Nat. Res. Def. Council, Inc., 467 U.S. 837, 844 (1984), the

reviewing court must still be able to understand an agency decision well enough to determine

whether it was based on a consideration of the relevant factors and reasons, see Sec. & Exch.

Comm’n v. Chenery Corp., 318 U.S. 80, 94–95 (1943).

9
Id.

https://www.whitehouse.gov/ostp/news-updates/2022/10/04/blueprint-for-an-ai-bill-of-rightsa-visio

n-for-protecting-our-civil-rights-in-the-algorithmic-age/.



The Algorithmic Explainability “Bait and Switch” | 5

AI/ML.
14

It claims that explainable AI/ML systems are more

trustworthy,
15

easier to understand,
16

safer,
17

and more

accountable/transparent.
18

For example, Scott Lundberg and Su-In

Lee write: “[t]he ability to correctly interpret a prediction model’s

output . . . engenders appropriate user trust . . . and supports

understanding of the process being modeled.”
19

Similarly, Marco Tulio

Ribeiro et al. write: “Understanding the reasons behind predictions . . .

is fundamental if one plans to take action based on a prediction, or

when choosing whether to deploy a new model.”
20

We do not disagree with these sentiments insofar as they

suggest that these are desirable features of an AI/ML system. The

problem, we will argue, is that explainable AI/ML models

fundamentally fail to achieve these goals: these models fail to assist

users in either correctly interpreting a model, or in understanding the

true reasons or principal factors behind the model’s predictions.

Specifically, we argue that there are three cardinal shortcomings of

current explainable AI/ML systems, stemming from three features of

the explanations these models generate: they are not unique, they are

not sincere, and they are produced after the fact. The three

shortcomings are: First, explanations produced by explainable AI/ML

algorithms purport to be action guiding, but they are not. We will

explain why they are inadequate for guiding our behavior, or assisting

us in planning about the future. Second, and related, explainable

AI/ML algorithms purport to shine a light on the actual (or otherwise

20
Ribeiro et al., supra note 13, at 1135.

19
Lundberg & Lee, supra note 13, at 1.

18
See generally Finale Doshi-Velez et al., Accountability of AI Under the Law: The Role of

Explanation, ARXIV (Dec. 20, 2019), https://arxiv.org/abs/1711.01134; see also Rebecca Crootof,

Margot E. Kaminski & W. Nicholson Price II, Humans in the Loop, 76 VAND. L. REV. (forthcoming

2023), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4066781 (manuscript at 25-26)

(“There is a growing body of caselaw where algorithmic decisions were invalidated on procedural

due process grounds.”); COECKELBERGH, supra note 15, at 122–23.

17
Yan Jia, John McDermid, Tom Lawton & Ibrahim Habli, The Role of Explainability in Assuring

Safety of Machine Learning in Healthcare, 10 IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING 1746 (2022); Éloi Zablocki, Hédi Ben-Younes, Patrick Pérez & Matthieu Cord,

Explainability of Deep Vision-Based Autonomous Driving Systems: Review and Challenges, 130

INT’L J. COMP. VISION 2424 (2022).

16
Matt Turek, Explainable Artificial Intelligence (XAI), DEF. ADVANCED RSCH. PROJECTS AGENCY,

https://www.darpa.mil/program/explainable-artificial-intelligence; COECKELBERGH, supra note 15,

at 120; see also Williams, supra note 15, at 327 (explaining differences between explainability

and interpretability).

15
Ribeiro et al., supra note 13, at 1135–36; MARK COECKELBERGH, AI ETHICS 118–19 (2020);

Mary-Anne Williams, Explainable Artificial Intelligence, in RESEARCH HANDBOOK ON BIG DATA LAW

318, 325–27 (Roland Vogl ed., 2021); Will Knight, The Dark Secret at the Heart of AI, 120 MIT

TECH. REV., no. 3, May/June 2017, at 55, 61.

14
Deeks, supra note 12; Ribeiro et al., supra note 13; Lundberg & Lee, supra note 13; Babic et al.,

supra note 13; PROC. OF ICML 2021 WORKSHOP ON THEORETIC FOUNDATION, CRITICISM, AND

APPLICATION TREND OF EXPLAINABLE AI (Jul. 26, 2021), https://arxiv.org/abs/2107.08821;

Muhammad Suffian et al., FCE: Feedback Based Counterfactual Explanations for Explainable

AI, 10 IEEE ACCESS 72363 (2022); Sindhu Ghanta et al., Interpretability and Reproducability in

Production Machine Learning Applications, 2018 17TH IEEE INT’L CONF. MACH. LEARNING &

APPLICATIONS 658; Andreas Holzinger et al., Causability and Explainability of Artificial

Intelligence in Medicine, 9 WIRES DATA MINING & KNOWLEDGE DISCOVERY, no. e1312, 2019; Katie

Atkinson et al., Explanation in AI and Law: Past, Present and Future, 289 ARTIFICIAL INTELL.

103387 (2020); MARCO IANSITI & KARIM R. LAKHANI, COMPETING IN THE AGE OF AI: STRATEGY AND

LEADERSHIP WHEN ALGORITHMS AND NETWORKS RUN THE WORLD (2020); Erwan Le Merrer & Gilles

Tredan, Remote Explainability Faces the Bouncer Problem, 2 NATURE MACH. INTELL. 529 (2020);

see also infra notes 15–18.
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put, motivating) reasons behind a decision. If successful, this would

help in garnering trust, encouraging usage, and better enable the

review of decisions. But, we will argue, these models fail to identify

the actual reasons for a decision, providing instead the “fool’s gold” of

a post-hoc explanation that may not underlie the actual decision.

Finally, explanations can be valuable insofar as they can underwrite

normative judgments – such as blame and praise – or what are

sometimes called in philosophy the second person or Strawsonian

reactive attitudes.
21

These attitudes are intimately related to

evaluating an agent’s quality of will – are they blameworthy or

praiseworthy in their behavior? In assigning blame and praise for a

human agent we usually need to know the reasons that motivate their

behavior – why they did what they did.
22

But the kind of explanations

that explainable AI/ML generates cannot help us to do this – they

cannot help us understand why the automated decision was made the

way it was, nor can they help us understand the actual reasons or

factors that led to it. As a result, the explanations cannot let us know

whether we are right to feel one of these reactive attitudes towards

the algorithm.

While one contribution of this paper is to explain these three

shortcomings of explainable AI, a second contribution is to show that

there is an alternative that does satisfy the desiderata that supporters

of explainable AI/ML argue for – what we and others call

“interpretable” AI/ML.
23

We will explain what it is, and how it differs

from explainable AI/ML. In short, interpretable AI/ML uses simple,

and usually additive, models which are intuitive and transparent,

such as linear regressions and shallow decision trees. But while

interpretable AI/ML can do some of what the cheerleaders for

explainable AI/ML desire, adopting a legal requirement of

interpretability in automated decision has its own costs and prompts

hard tradeoffs: in some cases, the most sophisticated and accurate

algorithms cannot be designed as interpretable AI/ML. We argue it is

better to face these tradeoffs head on rather than to pretend that

explainable AI/ML can provide the kind of explanation we want

without tradeoffs. Explainable AI/ML, as currently understood, is

therefore an attempt to have our cake and eat it too.

This paper proceeds as follows. Part I provides more

background on explainable AI/ML and some of the literature extolling

its virtues. It also explains in greater depth the differences between

interpretable versus explainable AI/ML. Finally, it provides a

synthetic (by which we mean, hypothetical and simplified) example for

illustration, which we return to throughout the paper. We will argue

that post hoc algorithmic explanations of the form generated by

leading explainability algorithms are ineffective along the two

dimensions we have described above – they fail to be effectively

action-guiding (Part II) and they fail to provide sincere

23
See, e.g., Rudin, supra note 12.

22
See Zoë A. Johnson King, Praiseworthy Motivations, 54 NOÛS 408, 409–11 (2020).

21
P.F. STRAWSON, Freedom and Resentment, in FREEDOM AND RESENTMENT, AND OTHER ESSAYS 1, 4–6

(1974).
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explanations/motivating reasons for the underlying automated

decisions (Part III).
24

In Part IV, we will consider the extent to which

interpretability should be a legal requirement, and under what

conditions. Finally, in our Conclusion we summarize and also discuss

an additional potential problem with explainable AI/ML that we do

not fully develop in the main text: namely, that they cannot support

reactive attitudes like blame and praise.

I. WHAT IS EXPLAINABLE AI/ML?

Our goal in this Part is for the reader to firmly understand

what explainable AI/ML algorithms do and do not do. To understand

their limitations, we must first distinguish explainable from

interpretable AI/ML.
25

Before we can do this, though, we start with a

very general overview of supervised learning. Before we start, a word

of comfort: while in the next few sections we use some formal

mathematical notation (Xs, Ys, and even some 𝛽s!), they are not

essential for understanding our main arguments – we offer them for

readers who want a slightly more technical explanation. Indeed, in

Part I.C we use a synthetic example to explain all these points in a

more illustrative way.

A. Supervised Learning Models

A typical supervised machine learning or classification model

(i.e., a model trained on structured data with labeled features) is

effectively a way of solving a function estimation problem using

certain optimization techniques. We wish to estimate the response, y

(for example, a person’s age), as a function of some features, x1, …, xn

(for example, the person’s height and weight). This is a statistical

learning task, in part because the way we are going to estimate this

relationship is by examining the available data (in our toy example,

that would be data on people’s ages, heights and weights).

Accordingly, we estimate that function by fitting a model to the

available data. To fit a model is to solve some optimization problem.

For instance, in a typical linear regression model, we have y = 𝛽x
T
,

where 𝛽x
T

is the inner product of a vector of the linear model’s

parameter coefficients, (𝛽0, 𝛽1, …, 𝛽n), and the transpose of the vector of

input variables, (x1, x2, …, xn). We would then search for the line of

best fit, where best is defined in terms of minimizing the sum of

squared distances between each point’s estimated value and its true

value. That is, we choose 𝛽 so as to minimize (y - 𝛽x)
T
(y - 𝛽x). For each

point, this is the squared difference between y and 𝛽x
T

(omitting the

25
See Babic et al., supra note 13 (“It is important to first distinguish explainable from

interpretable AI/ML. These are two very different types of algorithms with different ways of

dealing with the problem of opacity . . . .”).

24
Mathilde Cohen, Sincerity and Reason-Giving: When May Legal Decision Makers Lie, 59

DEPAUL L. REV. 1091, 1095–96 (2010); Micah Schwartzman, Judicial Sincerity, 94 VA. L. REV.

987, 1013–15 (2008); W. Bradley Wendel, Truthfulness and the Rule of Law, 35 NOTRE DAME J.L.

ETHICS & PUB. POL’Y 795, 816–17 (2021).
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subscript i). In more general classification tasks, the basic ingredients

are the same: our goal is to identify a function f which will best

classify items, on the basis of past observations, where best is defined

in terms of minimizing a certain loss function. For each point i, the

loss is given by l(yi, f(xi)). In linear regression, l(y, f(x)) = (y - f(x))
2
.

It is often the case that the output we are interested in is a

probability, and sometimes the ultimate decision is a function of that

probability. For example, suppose that we wish to classify a group of

people according to their political orientation, and suppose (to make

things simple) everyone will be labeled either liberal or conservative.

For each person, the algorithm could produce a probability that the

person is liberal or conservative. And we could then program the

algorithm to make a thresholded decision – namely, we will say the

person is liberal/conservative if and only if the predicted probability

that they are liberal/conservative exceeds 50%. If there are more than

two categories, then we would assign each person to the category that

they are most probably predicted to belong to. (With many categories,

that could be significantly less than 50%.)

B. Interpretability vs. Explainability

Now suppose we have a classification model given by y =f(x1, …,

xn) where f is the estimate (model) of the true but unknown underlying

function, let’s call it g, relating the features (x1, …, xn) to the prediction

(y). We will say that an AI/ML model f is interpretable (sometimes

called intelligible) if an ordinary person can understand how the

individual xi’s contribute to the prediction.
26

Let’s call this a

“white-box” model. The paradigm examples of interpretable or

white-box models are linear models or decision trees.
27

In linear

regression, it is easy to understand that the predicted y is given by 𝛽0

+ 𝛽1x1 + … + 𝛽nxn. This is simple, additive, and generally intuitive.

Consider an extremely naive example: we might say that a person’s

height (in cm) is given by 15 (the y-intercept) + 1.1✕ their weight (in

lbs). Hence, we would predict that someone who weighs 145 lbs is 15 +

1.1 ✕ 145 = 174.5 cm tall. This works out okay for average values, but

is not a particularly good model for low weight individuals. In any

case, the idea is extremely simple: take a person’s weight, multiply it

by some coefficient, and add a fixed “benchmark” value, so to speak.

The mechanics behind the prediction are very easy to comprehend.

While this is a helpful way of thinking about interpretability, it

is not a perfectly general or objective definition, as it depends on a

user’s subjective level of expertise or understanding. For example,

logistic regression is a type of linear model where the output is a

27
Zachary C. Lipton, The Mythos of Model Interpretability, 16 ACM QUEUE, May–June 2018,

article at 14 (“[E]ach node in a decision tree might correspond to a plain text description. . . .

Similarly, the parameters of a linear model could be described as representing strengths of

association between each feature and the label [output].”).

26
Yin Lou, Rich Caruana & Johannes Gehrke, Intelligible Models for Classification and

Regression, PROC. 18TH ACM SIGKDD INT’L CONF. ON KNOWLEDGE DISCOVERY & DATA MINING (Aug.

2012), at 1, https://doi.org/10.1145/2339530.2339556 (“By interpretability we mean that users can

understand the contribution of individual features in the model.”).
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probability. It uses a link function between the response and the

predictors, with the effect that the log odds are linear in the feature

variables. Some authors refer to such AI/ML models as interpretable.
28

While not implausible, this assumes quite a lot of statistical

understanding on behalf of a user – for example, that the model’s

linearity is on a log scale, and that it relates the predictors to the

probability in odds form.

What this leads us to is the idea that a perfectly general

definition of interpretability in the form of a set of necessary and

sufficient conditions is probably not possible to provide.
29

Rather, it is

better to think of interpretability as existing on a spectrum, whereby

some models are obviously opaque black boxes, such as a convolutional

neural network
30

with millions of trainable parameters, while others

are canonically transparent, such as a linear model with a few

predictors or a decision tree with two or three “if then” statements.
31

Often, deciding whether or not an AI/ML model is interpretable is, in

the words of Justice Potter Stewart, an instance of “I know it when I

see it.”
32

An ordinary regression model with one or two variables, such

as our example above of predicting a person’s weight on the basis of

their height, is clearly interpretable. A deep neural network with

millions of parameters is clearly not interpretable. But explicitly

articulating the boundary of interpretability is no easy feat.

Explainability is very different from interpretability. It does not

lie anywhere on the interpretability spectrum. Explainable AI/ML

attempts to do accomplish the following entirely different task: Given

a black-box model f (say, a convolutional neural network), an

explainable AI/ML algorithm constructs an interpretable function, h

(perhaps a linear model) which approximates f as closely as possible

on the available data. In other words, h is a second, separate function,

whose goal is to predict as closely as possible to f. To return to our

prior notation, we called the true but unknown function relating the

inputs to the output g. Explainability is not concerned with

approximating g. Rather, the goal of h is to replicate f faithfully, the

black-box model.

The idea is that we can use the black box to make the original

prediction, and then use the “white-box” approximation of that black

box to provide an explanation to a user who requests it. As Cynthia

Rudin puts it, “an explanation is a separate model that is supposed to

replicate most of the behavior of a black box.”
33

Hence, the

explainability algorithm explains the black-box model (i.e., the

33
See Rudin, supra note 12, preprint at 2.

32
Jacobellis v. Ohio. 378 U.S. 184, 197 (1964) (Stewart, J., concurring).

31
See Babic et al., supra note 13.

30
Convolutional neural networks are a type of neural network frequently used in image

recognition and similar tasks where the data “has a known grid-like topology.” IAN GOODFELLOW ET

AL., DEEP LEARNING 321 (2016).

29
Babic et al., supra note 13.

28
E.g., Sheikh Rabiul Islam, William Eberle, Sheikh Khaled Ghafoor & Mohiuddin Ahmed,

Explainable Artificial Intelligence Approaches: A Survey, ARXIV (Jan. 23, 2021),

http://arxiv.org/abs/2101.09429.
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estimated f), by finding a function similar to it (i.e., h) and not the

underlying relationship being modeled (i.e., g).

Unlike interpretable AI/ML, explainable AI/ML does not

attempt to replace the black box with a transparent one. Rather, they

aim to approximate the behavior of a black box as closely as possible

with a second box which is itself transparent. It follows from this that

explainable AI/ML cannot perfectly track a black box’s behavior across

the full feature space – if they could, then the explainable AI/ML

would by definition be equivalent to the black-box model – f = h.
34

Hence, this form of explainable AI/ML provides a post hoc

rationalization of a black-box prediction. This is the key to our

argument and to our critique of the normative value of explainable

AI/ML. We will return to this flaw throughout the paper.

Thus far, we have made our claims as to explainable AI/ML

generally. Now let us zoom in on one particular leading explainability

algorithm, LIME (which stands for Local Interpretable

Model-Agnostic Explanations), developed by Marco Ribeiro et al.
35

While we focus on LIME to illustrate our arguments, we emphasize

that our criticisms are not limited to this algorithm. Our point is more

generally about the limited value, from a law and policy perspective, of

the kinds of explanations that techniques like LIME can produce.

Once again, a word of comfort: this is a more technical discussion – for

readers not comfortable with mathematical notation they may want to

skip it and move straight on to I.C that develops similar points with a

more intuitive example.

1. The LIME Algorithm

Ribeiro et al. begin with the notion of an interpretable data

representation: x ∈ R
d ⟶ x' ∈ {0, 1}

d'
.
36

The idea is that the original

features (for example, word embeddings) may not be understandable

by humans, while interpretable data representations are (for example,

whether a certain natural language word is absent or present).
37

Hence, x corresponds to the original vector of features associated with

the instance we wish to provide an explanation for, and x' corresponds

to a binary vector of its interpretable representation.

Next, we “define an explanation as a model g ∈ G, where G is a

class of potentially interpretable models, such as linear models , . . . .

The domain of g is {0, 1}
d'
”

38
We also introduce a measure of complexity,

Ω(g), which could for example correspond to the number of meaningful

weights in a linear model.
39

We now have our black box model, f. Then,

we define a notion called locality: πx(z) is “a proximity measure

between an instance z to x.”
40

This is because we want explanations to

40
Id.

39
Id.

38
Id.

37
Id.

36
Id. at 1137.

35
See generally Ribeiro et al., supra note 13.

34
Rudin, supra note 12, preprint at 3.
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be locally faithful even if they cannot perfectly approximate f across

the whole space (a concept we might call global faithfulness).

Next, we introduce a penalty for infidelity: L(f, g, x) is “aπ
measure of how unfaithful g is in approximating f in the locality

defined by x.”
41

The informal idea is then to minimize L and keep Ω(g)π
low enough. LIME is then the solution to the following optimization

problem:
42

x) .ξ 𝑥( ) =   𝑎𝑟𝑔 𝑚𝑖𝑛 
𝑔∈𝐺

𝐿(𝑓, 𝑔, π  + Ω(𝑔)
Now if we assume that G is limited to linear models, and also

that L is a proximity weighted square error loss, we obtain:
43

x x

2𝐿(𝑓, 𝑔, π ) =
𝑧, 𝑧'∈𝑍 

∑ π (𝑧)[𝑓(𝑧) − 𝑔(𝑧')]

A few things to notice from these expressions: An explanation

is generated for a particular instance; hence, for different instances it

need not be the same explanation. How to select a loss is not

something we can answer mathematically. Least squares is a

convenient and well understood method, but there are many other

options – for example, L1 distance or cross-entropy. We also need to

select (the measure of complexity), and (the measure of fidelity)Ω π
and this too is not something we can uniquely determine

mathematically. Finally, we need to identify G, and this is perhaps the

most difficult part of the problem – what is the class of all

interpretable models? Ribeiro et al. make a simplifying assumption

and treat G as linear models,
44

but this is both over and under

inclusive – some interpretable models need not be linear (for example,

the classic single layer perceptron), and some linear models can get

very complex (for example, a Cox survival model is linear in the log of

the parameters, and it can have millions of trainable features). By

assuming that G is limited to linear models, Ribeiro et al. effectively

show how we can approximate any model with a linear model. They do

not shed light on what it takes for a model to be interpretable – they

simply take for granted that linear models are interpretable.

C. An Illustration

The prior two sections may have felt abstract or heavy on the

mathematical notation. In this section we try to show the same points

in a more intuitive way by developing a synthetic example, “The MIT

School of Law” – entirely fictitious—whereby a law school is trying to

design algorithms to help with its admission criteria. This example is

complex enough to illustrate the main problems with current attempts

at explainability, but by design an overly simplistic hypothetical

approach to the problem of admissions, a sort of “toy” problem.

1. The MIT School of Law

44
Id. at 1337.

43
Id. at 1338.

42
Id.

41
Id.



The Algorithmic Explainability “Bait and Switch” | 12

Suppose that having opened its brand new tech savvy law

school – we will call it “MIT Law” for short – MIT Law is interested in

automating its admissions process. To do this, the school will use

admissions data obtained from peer schools for the last 10 years in

order to estimate a certain model, which it will then employ to make

admissions decisions for its very first class of MIT Law students.

What makes the MIT Law example particularly stylized is that

we binarize everything – in our toy problem, there are “admissible

students”, and “inadmissible students”, and all students fall into one

category or the other. Information about students (such as their LSAT

and GPA) are then used as latent indicators of admissibility. The other

reason this example is a little bit fanciful is because it is not clear

what “admissibility” means; it is not clear that any such generalized

aptitude for law practice exists, and even if it does, it is not clear that

it is measurable.
45

At the same time, there does exist something that

law schools are trying (very likely imperfectly) to measure, and all

that is required for our toy example is the idea that the new MIT Law

is trying to do what other law schools are doing by way of an

algorithm.

While one could try to implement a real-life model like this,

and define admissibility in terms of, for example, predicted law school

GPA, or in terms of the probability of passing the bar exam, in reality

it would probably be a bad idea to assume that all students can be

divided as such. Usually there are many competing considerations: we

would like to have an intellectually and demographically rounded

class, while understanding that different students bring different

skills to their cohort.
46

There are also synergistic group dynamics so

that the success of a class, however defined, can depend on the

composition of the group itself.

Despite its limitations, we will stick with our stylized example

because it allows us to vividly illustrate our argument and to describe

some of the points in a more tangible way. We do not mean to suggest

that there is something particularly important about automating

higher education or admission decisions in particular. That said, in the

latter parts of this paper we return to the context question – does the

kind of explanation that an approach offers matter more for some

contexts than others – i.e., cancer diagnosis versus sentencing

decisions for a criminal offender?

Now, the first question is: what exactly is the school interested

in predicting? We called it ‘admissibility’ but what contributes to

admissibility? For the sake of our hypothetical, we will assume that

MIT Law is willing to be a little bit simplistic and decide who to admit

on the basis of their predicted law school performance alone. And we

will assume that being extremely quantitative in its approach, MIT

46
To be sure, as current litigation on college admission criteria before the U.S. Supreme Court

illustrates, what colleges are and should be measuring is a highly contentious question – but one

that we emphasize is not particularly relevant to our paper. See Students for Fair Admissions,

Inc. v. President & Fellows of Harvard Coll., 980 F.3d 157 (1st Cir. 2020), cert. granted, 142 S. Ct.

895 (2022). We merely are offering this as an easy to grasp example, nothing more.

45
Though, to be fair to our toy model, one could say the same (and many scholars have) about

latent measures of aptitude such as IQ, which are also not directly measurable.
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Law has decided to look only at applicants’ undergraduate GPAs,

denoted as x1, and LSAT scores, denoted as x2. While simplistic, this is

not all that far off from what US News actually has done as a major

part of its own rankings of schools,
47

nor is it too far off from how

schools evaluate some parts of an application file. We will assume that

MIT Law has obtained data on students’ past law school performance

(perhaps from a peer school), so that for each student in the training

set (i.e., the labeled set of structured data to which the model is then

fitted before being put to use) they have the student’s undergraduate

GPAs (x1) and LSAT scores (x2), as well as their law school GPAs (y).

They now wish to estimate a function y = f(x1, x2). For example, if we

use a linear model, as described above, we would assume f can be

reduced to a function of the form f(x; 𝛽) = 𝛽0 + 𝛽1x1 + 𝛽2x2 and we

would use the data to identify point estimates of 𝛽0, 𝛽1 and 𝛽2, using

the method of least squares (also described above).

We almost have our full model, but a prediction is not a

decision. We also need a function which takes the predicted GPA as its

input, and, again in our simplified toy example (no wait list!) provides

a binary (yes/no) answer regarding admission as its output. The

easiest way to accomplish this would be to simply set a threshold on

the acceptable predicted law school GPA. For example: admit everyone

whose predicted GPA is 3.7 or above. Such a threshold essentially

divides our data into two classes – those who are estimated to be

admissible and those who are estimated to be inadmissible, where

admissibility has been quantified in terms of predicted law school

GPA.

2. Interpretability in Practice

The model we have just described is very easy to interpret. If a

student is rejected and inquires as to the nature of her decision, the

school can provide a simple, understandable, and transparent

explanation. The predicted output is simply a sum of the inputs

weighted by their parameter estimates. The model uses a weighted

combination of an applicant’s GPA and LSAT score, and nothing else.

We can make the model’s parameters available, which would then

enable the applicant or anyone else to determine the feasible

combinations of LSAT and GPA that he or she likely needs to be

admitted the following year.

This information is not just “nice to have,” but crucial in terms

of the kinds of explanations that applicants want and, we would

argue, a more general desideratum of explanations in algorithmic

decision making. A transparent model is suitably action guiding – it is

actually useful in shaping the student’s subsequent behavior and

47
Robert Morse et al., Methodology: 2023 Best Law Schools Rankings, U.S. NEWS (Mar 28, 2022),

https://www.usnews.com/education/best-graduate-schools/articles/law-schools-methodology; see

also Robert Morse & Stephanie Salmon, Plans for Publication of the 2023-2024 Best Law Schools,

U.S. NEWS (Jan. 2, 2023),

https://www.usnews.com/education/blogs/college-rankings-blog/articles/2023-01-02/plans-for-publi

cation-of-the-2023-2024-best-law-schools.
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helping them plan for the future. If a student has his or her heart set

on MIT Law and wants to re-apply, should the student study for the

LSAT more? Should he or she instead take some additional

undergraduate courses in order to improve his or her GPA? These

questions can be meaningfully answered if the student is given the

transparent model that was used to evaluate their application.
48

Now suppose that the data MIT Law has obtained looks as

follows.

Figure 1. Hypothetical law school data.

Figure 1 depicts a synthetic data set that we have created for

150 students. As described, we have (again, made up!) information

about students’ LSAT scores and undergraduate GPAs. We assume

there are two types of students: admissible and inadmissible. This is

just a generalization of our 3.7 threshold from above.

We generated this hypothetical dataset by assuming that

admissible students have on average 168 LSAT and 3.7 college GPA

whereas inadmissible students have on average 162 LSAT and 3.3

college GPA, where both groups are normally distributed. What this

means is that admissible students do better, on average, in the

observed features, but there are still admissible students who just so

happen to obtain a low undergraduate GPA or low LSAT score (for

example: a student may get sick on the day of the test, or do poorly in

an undergraduate semester due to unexpected health problems) and

inadmissible students who happen to obtain a high undergraduate

GPA and LSAT score (for example, due to luck or due to taking

48
While it is true that the pool for the following year will always look different, this transparent

model can precisely at least answer the question “what would I have had to do differently to have

been admitted this year,” and that is very helpful in guiding their actions for the next application

cycle.
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particularly easy courses whose grade is not reflective of their

aptitude).

MIT Law’s task now is to identify a model that best

distinguishes the two groups. We can make estimates using different

models. The panels below show two attempts: on the left, we have a

linear model (the kind that we described above) and on the right we

have a single layer feed-forward neural network. Both have been fit to

the hypothetical law school data.

Figure 2. A linear model (top) and neural network (bottom) fit to law

school data.

The black line in each panel is the fitted model – this is the

classification boundary. When a new student applies to law school, we

would take their LSAT and college GPA and plot them on this grid. If

they are below the line they would be rejected. If they are on or above

the line, they would be accepted. Notice that the simple model (left)

does just a little bit worse than the neural network (right). By worse

we mean that the model “incorrectly” admits 8 inadmissible students

in the test data, and “incorrectly” rejects 1 admissible student (9/150

mistakes). The neural network contours better around the groups, so

that it “incorrectly” accepts only 4 students and “incorrectly” rejects 2

(6/150 mistakes).

The linear model on the left can be described as before, using

an expression of the form y = 𝛽0 + 𝛽1x1 + 𝛽2x2. The prediction is a

simple linear function of one’s LSAT and undergraduate GPA. But the

neural network model cannot be described this way. Instead, the (very



The Algorithmic Explainability “Bait and Switch” | 16

simple) neural network model we have used takes a student’s LSAT

and GPA, connects them to more than a dozen nodes in a hidden layer,

and then connects those nodes to the outcome. The result of this

process is that it would be hard to describe “how much” of a role one’s

LSAT plays, and how much of a role one’s GPA plays. It would also be

hard to know how the relative importance of those variables changes

as we update the model. It would not be possible for a rejected

applicant to grasp the feasible combinations of LSAT and GPA that

would lead them to be admitted the following year. If she retakes the

LSAT, how much better does she need to do? It is hard to say. The only

way for her to really answer this question under various hypothetical

scenarios is to run this model on her own computer, if she was given

access, and feed it various possible combinations of LSAT and GPA

and evaluate the outcome.
49

In the hypothetical case we are considering, one thing we can

do with both the linear model and the neural network model is to show

to all applicants the classification boundaries in Figure 2. That can be

helpful to guide action, but note that those boundaries change as the

model is updated with new data (more applicants, more graduates), so

what we would really like to understand is how the variables are

combining to formulate each prediction. Moreover, visualizing the

classification boundary is only possible in toy cases where the number

of variables is three or less (in our case we have two). In real life, a

good model might have tens or hundreds or thousands of variables

depending on the question. In general, for an n-dimensional

classification problem, the classification boundary is an n-1

dimensional hyperplane. In our example, it is a line segment. With

three variables, it would be a two-dimensional slice through a

three-dimensional plot. Beyond that, we can no longer rely on

visualization in the same way.

Thus far we have contrasted a simple linear model, which is

interpretable, with a neural net (NN) model, which is not. We have not

yet said anything about explainable AI/ML in this example. As we

described above, leading explainable AI/ML, such as LIME
50

and

SHAP,
51

generate a supposedly transparent "white-box” model that

tries to explain a non-interpretable “black-box” AI/ML model. That

sounds good, but what does that actually mean in practice? Let us

explain by imagining how MIT Law might do exactly that.

51
Lundberg & Lee, supra note 13.

50
Ribeiro et al., supra note 13.

49
Coincidentally, this is indeed how some authors have tried to articulate what explainability

means – namely, to allow users to interact and run the model even if they do not understand its

internal workings. See Lipton, supra note 27, article at 15. We are not in principle opposed to this

practice, it can provide limited benefits. But our argument is more narrowly directed at leading

explainability algorithms.
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3. Explainability in Practice

Suppose that after constructing the NN model in the right

panel of Figure 2, we then engineer a linear model that locally

approximates the NN model as closely as possible, as in Figure 3,

below.

Figure 3. Linear approximation (red line segment) of NN model

(black curve) fit to law school data.

The model depicted by the red line is of the simple linear form.

We can therefore use that model (the red line segment) in order to

explain the uninterpretable one (black curve) for a particular student

whose LSAT and GPA land them in the neighborhood where the red

line segment is approximately tangent to the black curve. If a student

asks why she was rejected from MIT Law and the school wanted to

answer truthfully (if somewhat technical in its form, although it is

MIT after all!) it could tell her: a linear approximation of our black-box

model suggests that this is roughly the formula it applied to your

application file. It is not the actual formula used, but it is our best

simplifying guess.

The student can then (supposedly, according to explainable

AI/ML proponents) use that formula in order to guide her subsequent

behavior – for example, to estimate how much better she needs to do

on the LSAT the next time around to get admitted to MIT Law. This is

what explainable AI/ML algorithms attempt to do – to give an

explanation for a non-interpretable AI/ML model. In this case we have

offered an illustration of the influential LIME
52

explainability

algorithm. It is this kind of explainability algorithm that is the subject

52
Ribeiro et al., supra note 13, at 1135; see also Lundberg & Lee, supra note 13, at 2 (similar

SHAP algorithm).
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of our arguments – algorithms, like LIME, which produce post hoc

rationales of black box model predictions.
53

In the next section, we

explain what it is about the post hoc nature of those rationales that

make them unable to do what people want explanations to do.

II. WHY EXPLAINABLE AI/ML CANNOT ACHIEVE ITS GOAL OF

ACTION GUIDANCE

As we have discussed in Part I, an interpretable AI/ML model

is a model that can be understood immediately. Explainable AI/ML, by

contrast, is one for which we can construct a secondary approximating

model which can itself be understood. While there are many different

approaches to explanation, the linear approximation is a paradigmatic

example, and they all share a family resemblance in the sense that we

try to glean insights about what is happening inside the black box

without opening it up. Meanwhile, with an interpretable AI/ML model,

we simply avoid using the black box in the first place.

In this Part, we demonstrate why explainable AI/ML models

cannot do the work that their proponents would like them to do.

Specifically: They fail to effectively guide action, they fail to provide

sincere explanations/motivating reasons for the underlying automated

decisions, and they cannot underwrite normative attitudes like blame

and praise. We develop each point in turn.

A. Effective Action Guidance

If a student has been rejected from law school in our example,

and she seeks an explanation, this could be either because she would

like to request a review of the decision or, more likely, because she

would like to know what she needs to change in order to have a better

chance at being admitted next year. Similarly, if a loan applicant is

denied a loan, she wants to know what she needs to change in order to

have a better shot at being given a loan by the next institution or the

next time around.
54

If a defendant is denied parole, she wants to know

how to change her behavior in prison in order to have a better shot at

the next hearing.
55

If an applicant is not hired, she wants to know

which skill sets to cultivate in order to have a better chance next

recruitment season, and so forth.
56

The point is that explanations are

valuable in no small part because they can be action guiding. A causal

explanation, for instance, is valuable because it provides

understanding about which input has to change in order to change the

output.

Consider a non-algorithmic analogy to show you how this is

related to explainability. Suppose you are waiting for a friend, Dave, to

56
See Ajunwa, supra note 1, at 623.

55
See Coglianese & Ben Dor, supra note 1, at 802–04.

54
See Magnuson, supra note 1, at 349–50.

53
We understand that “explainable AI” is often used much more broadly, to refer to any kind of

system that sheds some light on an algorithmic prediction. But in this project we limit our

attention to LIME and its counterparts, which are indeed the leading explainability algorithms.



The Algorithmic Explainability “Bait and Switch” | 19

meet you at a movie theater. After waiting for 30 minutes you call

Dave’s partner, Sidney, to ask if they know where Dave is because you

want some guidance between whether to (a) buy tickets and snacks for

you and Dave because Dave will be along in a minute, (b) get tickets

for a later show because Dave is going to miss this one, or (c) see the

show you originally intended alone since Dave is not coming at all

today. Sidney says: “Hmm. Dave could be delayed due to a work

emergency.” You thank Sidney for the information, but in truth this

explanation is not very helpful to you. If there were a reason to believe

Dave had a work emergency, that would be useful to you in deciding

among your options; but simply suggesting that there could be a work

emergency because a work emergency is consistent with “the data”

(i.e., Dave being late) is of little use. If Dave had a work emergency

you might pursue option (b), if someone in Dave’s family got sick and

needs his help you may pursue option (c), and if Dave is just stuck in

traffic you might pursue option (a). The explanation Sidney has given

you does not tell you which of these it is, all could be the explanation,

and for that reason her advice is not action guiding.

Now let us return to algorithmic models and their explanation.

For similar reasons, explainable AI/ML is not nearly as useful in its

action guidance, nor is it as valuable in its transparency, as an

interpretable model can be. For example, if the student who was

rejected by MIT Law attempts to use the explainable AI/ML model in

our hypothetical to guide her subsequent behavior, the relevance of

the approximation depends on where the student falls. Applicants

near the mean of both groups (around 165 LSAT and 3.6 GPA) are

classified very similarly by both the interpretable and explainable

AI/ML models illustrated above. Indeed, in the neighborhood of the

mean values, the only way to be classified differently by the original

model and its explaining model (i.e., to be admitted by the original and

rejected by the explanatory, or vice versa) would be to fall exactly in

the vanishingly small space between the black curve and red line

segment in Figure 3.

Meanwhile, applicants at the two extremes can be classified

differently (i.e., receive a different result) by the different models very

easily. For example, for students with an LSAT score of 175, everyone

with a GPA between approximately 3 and 3.4 will be treated

differently by the actual model and its linear approximation. To

understand why, we direct the reader to Figure 3, above. Notice that

around LSAT scores of 165, the linear approximation (red line

segment) is approximately secant to the original neural network

(black curve) – i.e., in that small region it is a very good

approximation, and there is almost no space between them where a

point could fall. But, around LSAT scores of 175, the space between

the red line segment and the black curve is very large. Every applicant

who falls into the space between them would be classified differently

by the original model and its approximation. So for these students the

linear approximation is neither revealing of what is happening inside

the black box nor very useful in guiding their future behavior. Indeed,

if they attempt to use it for action guidance, it will severely mislead
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them. A student with a 175 LSAT score would assume she only needs

approximately 3.0 GPA for admission when in reality she needs at

least 3.4.

More generally, the point is that when our rejected law school

applicant learns that she will be evaluated using a point system that

is based, additively, on her LSAT score and her GPA – as she would, if

the admissions system were based on a simple interpretable AI/ML

model – she can plan for the future. She can, for example, consider

how much time she has to study for the LSAT, take a prep course, etc.,

if it seems feasible that this will lead to her admission. If her LSAT

score was already near perfect, she could discern that a marginal

improvement will not change the result. If her GPA was already high,

she may want instead to spend more time improving her LSAT score.

And so forth. She knows which knobs she needs to turn, and by how

much. This is exactly what she wants, as does our loan or parole

applicant in those examples.

But the explanations generated by explainability algorithms

fail to provide this kind of action guidance, precisely because they do

not reveal the actual mechanism by which the original decision is

made. They tell the student, in effect: it could be that you were

rejected because your LSAT score was too low, as this would be

consistent with the data. But despite this explanation, it could also be

that the student was rejected because her GPA was too low, or because

their combination was too low, etc. Our rejected student would not

learn anything about the admissions procedure from a post hoc

explanation that is consistent with the data. The post hoc explanation

is simply an explanation that is permitted given the data, because it is

not inconsistent with it.

Proponents of explainable AI/ML may point out that such

explanations are local, meaning that for every given applicant we

generate a unique explanation (i.e., a unique red line segment

consistent with their feature values). But this reinforces our point

about the post hoc nature of the explanation and its inability to guide

future action. If a unique explanation is generated for every applicant,

then we can no longer even pretend to be shedding light on the actual

classification boundary that was applied. We elaborate on this point

below.

III. WHY EXPLAINABLE AI/ML IS INSINCERE (AND WHY IT

MATTERS)

Explainability models like LIME ordinarily generate a unique

explanation for every instance. That is: we take an instance (a law

school applicant, in our example), and given the decision that they did

receive (admit/reject), we generate a plausible linear model that could

have produced that decision. In other words, algorithms like LIME

generate a different explanatory model for every instance. Given this,

one might take issue with our discussion above – where we treat the

approximating model (the red line segment in Figure 4) as fixed, and

consider how different students would fare had that model been
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applied to their case. In reality, as we noted above, every student

would be shown a slightly different red line segment that is consistent

with their case, because the loss function that we are minimizing

includes a term that pertains to proximity from a particular instance

(as we explained in I.B.1).

However, far from being a saving grace for AI/ML

explainability models like LIME, this poses an additional problem for

them. Instead of producing a stable and robust explanation, it becomes

clear that the explanation they produce is a post hoc rationalization as

soon as one realizes that it can differ from instance to instance (or

from applicant to applicant, in our example). Otherwise put,

explainable AI/ML is explicitly and inherently insincere about the

grounds for a decision. In fact, even for a single applicant we can

generate more than one explanation.

A. Illustrating Explainable AI/ML’s Insincerity

An easy way to illustrate explainable AI/ML’s insincerity is to

consider further how the model might generate different explanations

for different people. Before we return to MIT Law, let us illustrate why

this is a problem with an even simpler example. Imagine you are a

man going on a date with someone. The dater ends the date by telling

you: “you are amazing, you are exactly the kind of person I want to

date except I won’t date men under six feet. I am so sorry. I am sure

you will find someone great.” Your feelings are hurt, but at least you

believe it really was your height, which is not something you can

control. A month later, you discover the dater is seriously dating

someone who is 5’8”. You might have many thoughts about the dater

and the person’s dating behavior, but one immediate feeling you might

have is that the dater has been insincere. The explanation given was

not the explanation (even though in your case it was consistent with

“the data” at that point in time) – because if it had been the

explanation, the dater would not be with the other chap either.

Now let us return to MIT Law and see how the same is true

there. The explainable AI/ML model generates inherently insincere

explanations as evidenced by the fact that it would generate different

explanations for different applicants, since not all applicants are

classified the same way by the two models (the black box and its

approximating white box). Accordingly, by hypothesis, there exists

some pair of applicants that would receive different explanations.

Indeed, this will be true for many pairs of applicants. Consider, for

example, the student in our model who is rejected with a 170 LSAT

score (bottom right oval in Figure 4). The approximating model we

have been using to illustrate our argument so far would admit her, so

if we want to explain why she was rejected we need a second

approximation, as in Figure 4, below.
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Figure 4. Competing linear approximations of neural net model fit to

law school data.

The purple line segment offers a second, competing linear

approximation of the neural net model (the black curve). For the

student corresponding to the point inside the bottom right rounded

oval, this model would count as a more effective explanation since it is

now consistent with the NN model (unlike the red line segment, which

is inconsistent with the original model for this student, because it

would admit the student whereas the NN model would reject the

student).

This reinforces what we have been calling the post hoc nature

of algorithmically generated explanations. We look at where the

student falls in the original model, and we identify an “explanation”

that reinforces the original decision. For the same reason, multiple

competing explanations can be mutually inconsistent across a group of

instances (applicants). If we use the purple line segment as our

explanation, then the students inside the oval on the top left should be

admitted. But if we use the red line segment as our explanation, then

the student on the bottom right should be admitted. But under neither

line segment are they admitted or rejected together – that is, neither

explanation can predict what the model tells us to do for both students

simultaneously. And if these students can communicate with each

other, then they will know we are being insincere to at least one of

them – that is, the explanation we gave one of them does not apply

“the rule” because it does not explain the result that occurred to the

other. Thus, far from promoting trust and transparency, our

hypothetical MIT Law will be almost sure to undermine its applicants’

trust by using an explainability algorithm in its admissions process.

In the examples we have been using there has been a feature

that has exposed the insincerity. In our dating hypothetical, our

rejected man only learned about the insincerity of the dater’s

explanation because of his observing the dater’s subsequent

relationship. Likewise, our applicant to MIT Law only knows about

the insincerity of the school’s algorithm by comparing notes with the
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other applicants and their own queries and responses. In many

instances, those who are adversely affected by an algorithm will not

have as ready an opportunity to “share and compare” and thus detect

the insincerity.

But that is not a mark in favor of the explainable AI/ML

algorithm. Indeed, if one were to adopt an explainable AI/ML

algorithm precisely because it makes the detection of insincerity more

difficult, that would be a mark against it for a system designer whose

argument for adopting the algorithm is to be transparent and promote

trust. It would be particularly noxious to tout the benefit of one’s

algorithm as giving transparent explanations when those explanations

are insincere and contradictory, but those features are hard to detect.

Insincere explanations are, in many instances, not the kinds of

explanations worth wanting.

So far, we have focused on the LIME algorithm for illustration

because of its ubiquity and simplicity, but the problem is not limited to

the LIME algorithm. Consider another leading algorithm developed by

Lundberg and Lee.
57

It is called SHAP (Shapley Additive

Explanation). The idea is based on a solution concept from cooperative

game theory known as a Shapley value.
58

Like LIME, this algorithm

identifies a model which estimates the feature importance of a

black-box model. In the context of explanation, the Shapley value

provides the average contribution of a feature. In this sense, both

LIME and SHAP are what Lundberg and Lee call “additive feature

attribution methods.”
59

In our simple law school admissions example,

they are linear approximations without interaction (they enable us to

identify the appropriate red line so to speak, as in Figure 3). They

construct a model that allows us to make statements such as those we

would make in the MIT Law example: by simply adding up the feature

contributions we approximate the model’s prediction. Like LIME,

SHAP is a post hoc exercise, and like LIME it can only be guaranteed

to be locally faithful. It cannot be guaranteed to be an accurate

approximation everywhere because, again, that would mean it is

equivalent to the original model and in that case we would no longer

need the original model.

B. Why Insincere Explanations Are a Problem

We have argued that instead of providing the actual reasons for

a decision, Explainable AI offers post hoc rationalizations. Some of

what is distasteful about such explanations came out in the dating

example, and the more general MIT Law hypothetical, but it is worth

spending some time to more formally ask whether and why post hoc

rationalizations are actually bad. Otherwise put, what makes the

insincerity of post hoc rationalizations a problem?

59
Lundberg & Lee, supra note 13, at 2.

58
L.S. Shapley, Notes on the n-Person Game – II: The Value of an n-Person Game, RAND CORP.

WORKING PAPER DOC. NO. RM-670-PR (Aug. 21, 1951), https://doi.org/10.7249/RM0670.

57
Lundberg & Lee, supra note 13.
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Consider the kinds of algorithms, such as COMPAS,
60

that we

have seen used in the criminal justice system in ways that have been

heavily criticized.
61

Once again we will just describe it in an

intentionally oversimplified way to illustrate the point. Start with an

analogy. Suppose that a certain defendant is denied parole one

morning by a presiding judge or probation officer. This defendant

wants to know why they were denied parole, and asks the judge’s

clerk. After the judge has made her decisions for that session, the

clerk takes a look at that morning’s data, and searches for a pattern.

Conveniently, it turns out, everyone granted parole that morning has

been a volunteer of the prison book club. The defendant in question

was not a volunteer of the prison book club. Hence the clerk tells the

defendant: the reason for your denial of parole is that unlike all those

granted parole this morning, you did not volunteer in the prison book

club.

In what way was the clerk’s explanation insincere? Because of

its post hoc and contingent nature. The clerk picked out this

explanation because the clerk recognized that the defendant was not a

volunteer of the prison book club and, coincidentally, everyone granted

parole was a book club volunteer. The clerk did not pick out this

explanation due to a sincere belief that the judge’s conclusion is

causally determined by membership in the prison book club. This

explanation therefore is neither unique nor the actual reason for the

judge’s decision. It is simply one of many patterns that the clerk was

able to identify after the fact in order to justify or rationalize the

judge’s decision.

Now here is the crux of the point: explainable AI/ML behaves

much like the clerk in our analogy. And insofar as one finds the clerk’s

insincerity to be objectionable, then Explainable AI/ML’s insincerity,

as exemplified by algorithms like LIME and SHAP, is objectionable in

a similar way.

While that sounds intuitive, we should be careful to examine in

a little bit more detail what is meant by insincerity to understand why

it is bad. First, there is a sense in which such insincerity is

self-evidently a bad practice, and a sense in which it makes

explainable AI self-undermining. We know, by hypothesis, that the

reason given is not in fact the actual reason for this defendant’s denial

of parole – indeed, if we expand our observations and look at decisions

made on other days we would learn that many people who were not

volunteers for the prison book club but who had otherwise stellar

behavior records did receive parole.
62

Hence, the rationale is false.

62
Of course, it would be different if there really was a causal relationship between the book club

and receiving parole. In our hypothetical example that is not what we intend. And indeed it

would be quite a bad policy for criminal justice if this was the reason.

61
See Kay Firth-Butterfield, Artificial Intelligence and the Law: More Questions than Answers?,

14 SCITECH LAWYER 28 (2017); Sophie Noiret et al., Bias and Fairness in Computer Vision

Applications of the Criminal Justice System, 2021 IEEE SYMP. SERIES COMPUTATIONAL INTELL.; Gijs

van Dijck, Predicting Recidivism Risk Meets AI Act, 28 EUR. J. CRIM. POL’Y & RSCH. 407 (2022).

60
Jon Kleinberg, Sendhil Mullainathan & Manish Raghavan, Inherent Trade-Offs in the Fair

Determination of Risk Scores, ARXIV (Nov. 17, 2016), https://arxiv.org/abs/1609.05807 (indicating

Jan. 2017 presentation at 8th Innovations in Theoretical Computer Science conference).



The Algorithmic Explainability “Bait and Switch” | 25

The explanation is thereby a kind of fool’s gold, so to speak, or a

kind of moral sedative. It is provided merely to placate the defendant

by providing a plausible rationale of why the judge might have decided

the way she did even though we know that is not in fact the reason for

the judge’s decision. If a public interest litigation group wanted to

challenge the judge’s decision making, it might wrongfully spend time

trying to put pressure on the judge’s book club practice, when in fact

that is not the explanation for the result. If criminal defendants – or

perhaps more likely, a group of criminal defense lawyers or members

of the public defender’s office – started talking amongst each other,

then their faith in the explanations given would also crumble when

they realize that the explanations are just insincere post hoc

rationalizations. More generally, once users of algorithms become

aware that they are receiving explanations which are false in this

sense, that will undermine the system’s credibility, as well as the

user’s trust in the system (which is antithetical to what explanations

attempt to accomplish in the first place).

What would be a better form of explanation in this case? It

would be normatively more desirable to say that while we do not know

why the judge decided the way she did in this particular case, her

decision is defensible on multiple grounds, and among them is that

volunteering in the prison book club might have improved the

defendant’s overall score. This would at least be an honest assessment.

This is valuable because we often run the risk of uncovering patterns

with post hoc explanations which we know ex ante not to be causally

relevant. For example, suppose the clerk instead recognized that

everyone granted parole on the relevant morning was wearing a blue

t-shirt. In this situation, it would be more harmful to the system’s

legitimacy to produce this as the explanation, than to simply produce

nothing. Why? Because we have good reason to believe that wearing a

blue t-shirt would not, and should not, improve the defendant’s score

(indeed, that is not something the judge should be looking at, at all).

But when algorithms generate explanations, they cannot distinguish

between the book club story and the blue t-shirt story. The explaining

algorithm does not have a causal picture of what is happening in the

original black-box algorithm. The reason we know that the latter is

patently false is because we are using our prior information about how

the judge might be reasoning, and we know that t-shirt color should be

legally irrelevant; hence any such association most probably occurred

by chance. It is far less clear ex ante that prison volunteer work will

be causally irrelevant, and so if offered this explanation one might

mistakenly take it as the explanation and thus action guiding.

What this discussion illustrates is that while post hoc

explanations are ordinarily arbitrary in the sense of not producing the

actual (causally relevant) reason for a decision, some such

explanations can be legitimate, or legally justifiable (the book club

explanation), while others are not legitimate (the t-shirt color

explanation). In the latter camp we could also include explanations

based on gender, ethnicity, or race, for example. When the explanation

is not justifiable, that is an immediate problem – because for
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normative/policy reasons we do not want judges to rely on features

such as, say, race or ethnicity. When the explanation is justifiable, that

is better, but there can still be a problem – which is the action guiding

dimension that we have discussed. Even the book club explanation is a

bad explanation, because we do not know how if at all joining the book

club may affect this defendant’s chances later on. If we knew that as a

general matter joining the prison book club boosts one’s behavior

score, then the book club explanation would be effective. But we do not

know this.

We hope we have explained why the failure of explainable

AI/ML to effectively guide action and its tendency to generate

insincere explanations are problems. But to make matters worse, they

are problems that run counter to the very benefits of explainable

AI/ML that its proponents champion. For example, Ribeiro et al. write

that: “Despite widespread adoption, machine learning models remain

mostly black boxes. Understanding the reasons behind predictions is,

however, quite important in assessing trust, which is fundamental if

one plans to take action based on a prediction, or when choosing

whether to deploy a new model.”
63

Similarly, Lundberg and Lee start

their paper by observing: “The ability to correctly interpret a

prediction model’s output is extremely important. It engenders

appropriate user trust, provides insight into how a model may be

improved, and supports understanding of the process being

modeled.”
64

From a behavioral perspective, however, it is hard to see how

an insincere explanation of this sort could provide the immediate

benefits these authors tout, once its users recognize the insincerity.

Would this increase trust in the parole process? Maybe in a one-shot

round, so to speak, but certainly not in the long run. Does it increase

the transparency of the judge’s reasoning? Not at all. In fact it often

obscures it. Does it promote democratic accountability and the rule of

law? Doubtfully – on the contrary, picking out an insincere

rationalization and pretending it to be the reason for a decision seems

to undermine the standing and legitimacy of the judicial office. But

this is exactly what Explainable AI/ML does. We apply a black-box

model to generate a prediction. We don’t know the actual reasons for

that prediction. We then approximate the model using a white-box,

and we give the reasons associated with the white-box prediction,

pretending them to be the actual reasons.

C. An Objection: Sincerity vs. Justification

We have given a fairly intuitive argument for why insincere

explanations are a problem. But it is worthwhile to pause to consider

whether the argument, though intuitive, might be wrong. Some

scholars have recently suggested that what matters more for

64
Lundberg & Lee, supra note 13, at 1.

63
Ribeiro et al., supra note 13, at 1135.
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procedural integrity is not so much sincerity, but rather justification.
65

When we ask whether an algorithmic decision can be justified we

want reasons, Gillian Hadfield argues, that “follow the rules of our

community.”
66

But those reasons, she argues, need not be unique, nor

do they need to be the actual reasons for a decision.

Consider a lending example, which Hadfield raises:
67

an

applicant is denied a loan by a bank and seeks to know why she was

denied the loan. The bank has a black-box algorithm which deemed

the applicant too risky to lend to. While the bank may not know the

actual feature values that led to the denial, Hadfield argues that it

can give any legitimate explanation consistent with the data. For

example, it can say: your credit score was not high enough, your

annual income was not high enough, your work experience is

insubstantial, etc. These would all presumably be true in such a case.

And any of these is a legitimate justification. By comparison, an

illegitimate justification would be: you belong to X minority race and

we decided not to lend to applicants of this race. So she argues that

legitimate reasons – those that will make the decision justifiable –

need not be the actual reasons. And on Hadfield’s view, while

procedural justice requires legitimacy (and in turn justifiability) it

does not require sincerity. We simply have to produce some legitimate

reasons – not necessarily the ones that causally brought about the

decision maker’s judgment.

This position echoes some writing in legal scholarship outside

the context of algorithmic decision making. Mathilde Cohen, for

example, argues that lack of sincere reason giving is in many legal

contexts not an impediment to the legal validity of a decision.
68

To

make this argument, she first distinguishes between motivating and

normative reasons, following the renowned philosophers Bernard

Williams and Thomas Nagel.
69

Motivating reasons are said to explain

a person’s actions – they are the reason in virtue of which the action

was taken.
70

Normative reasons, on the other hand, are said to justify

a person’s action rather than explaining it.
71

For instance, in the

lending example, the fact that a denied applicant’s credit score is

insufficiently high can be a normative reason without being a

motivating reason. By normative reason, Cohen (following Williams

and Nagel, among others) means that it is a reason which, in the

context of our legal institutions, could constitute a legitimate ground

for the decision.
72

But it may not be the actual ground for this

72
See id. at 1107–08.

71
Id.

70
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69
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particular judge’s decision.
73

Meanwhile, the fact that the applicant

belongs to a minority race could be a motivating reason without being

a normative reason. That is, it could be the actual ground for this

particular judge’s decision even though the judge should not be

deciding on that ground.

Having made this distinction, Cohen then argues that there are

two ways we can understand sincerity: as a requirement that our

stated motivating reasons correspond to the reasons that in fact

motivated us (internalist reading) or as a requirement that our stated

normative reasons correspond to reasons which are in fact legitimate

justificatory reasons (externalist reading).
74

Finally, Cohen then

argues that while externalist sincerity can sometimes be called for,

internalist sincerity is rarely a jurisprudential requirement.
75

Hence,

as Hadfield suggests, when a loan seeker’s application is denied, the

decision maker need merely to present normative reasons – i.e.,

reasons that justify the decision. Those reasons need not be the

reasons that actually motivated the decision maker.

While this is an interesting and compelling argument, we think

there is a bit of a sleight of hand here, and that sleight of hand is

further exacerbated if we try to extend Cohen’s argument to the

algorithmic context (she does not do this) and to argue on its basis

that sincerity should not be a requirement for explainable AI/ML. The

problem for her argument is because the ordinary notion of sincerity is

inextricably bound up with what Cohen would call internalist reasons.

The social practice of reason giving in the common law legal tradition

is thought of as giving not just a reason, but a motivating reason.

Consider our dating example again: after the dater explains

they do not date anyone under 6 feet, you spot them with someone

who is clearly well below that height. Feeling like you’ve been lied to

and misled, you ask the dater why they were insincere about their

rationale for not dating you. The dater says: “I was not insincere.

Height is one among many normatively permissible reasons to reject a

dating prospect. While it was not my reason, it is indeed a justifiable

reason given our dating norms and practices. Hence I gave you a

sincere explanation, albeit on an externalist reading of sincerity.” At

this point, we suspect, you would believe that the dater is trying to be

a little too clever with you. All you want to know is why they did not

want to date you. It does not help for the dater to report one among

many possible “permissible” reasons for why one person does not like

another enough to date them, even though this was not the dater’s

reason. That is simply not what you are interested in, and if that was

what sincerity required us to give, sincerity would cease to be of any

real value to us.

The value of sincerity is connected to action guidance, the topic

of Part II. Internalist sincerity, and the associated motivating reasons

it requires decision makers to produce, is valuable not just in and of

itself, but in order for explanations to play their action guiding role.

75
See id. at 1137. But see id. at 1138 (suggesting a context-sensitive approach).

74
Id. at 1122.

73
See id. at 1097.
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Consider a different example. Suppose we have two navy aircraft

pilots, whose task is often to fly in sequence, one behind the other

(such as in reconnaissance missions). Call the front pilot Maverick and

the trailing pilot behind him Goose. It is important for Maverick and

Goose to correspond some of their behaviors to each other. In

particular, it is important for Goose to understand when and why

Maverick slows down so that Goose can react accordingly. Part of

reacting accordingly is to predict how Maverick will react to various

conditions – in some instances Goose will not have time to wait and

see what Maverick does, and if he does not not start slowing down

early enough the two may crash.

Now, for any given instance in which the Maverick slows down,

it is possible that there are multiple justifiable reasons that he could

produce for taking that action. For example: Maverick saw something

noteworthy on the ground, the cloud cover became too thick, the

distance between Maverick and Goose had become too large, and so

forth. These are all legitimate reasons to slow down. But Goose, flying

behind Maverick, needs to know the actual reason Maverick is slowing

down. If the Maverick says “I slowed down because the distance

between us grew too large,” and that is not the motivating reason,

then the next time the distance grows too large, Goose will slow down

while Maverick may not. Even more worrisome, if in fact Maverick’s

motivating reason is “I slowed down because the cloud cover became

too thick,” but Goose mistakenly thinks this is not Maverick’s

motivating reason, then the next time the cloud cover gets at least as

thick Goose will not slow down while Maverick does and they may

crash. It doesn’t matter that both of these explanations are perfectly

justifiable. What is needed to guide Goose’s behavior is the motivating

reason. Otherwise put, the fact that Maverick is inconsistent with

their reason giving is a problem for action guidance – even if all the

reasons they might give are permissible normative reasons.

For algorithmically generated decisions to be appropriately

action guiding we think the same is true. It is not enough that the

reasons be justifiable, i.e., normatively permissible. What is needed for

true action guidance is that the reasons given be the motivating

reasons, i.e., sincere reasons.

Indeed, not only are insincere reasons not helpful, but they

may be pernicious. To illustrate, consider another toy hypothetical

involving sentencing. Imagine that in every sentencing hearing

involving a black defendant a particular judge offers a pretextual

(internally insincere but normatively sincere) reason for the decision,

which covers up the judge’s racism underlying the severity of the

sentence given. For example, the judge offers as a reason “the higher

sentence is warranted because the accused has failed to show any

remorse over the crime.” Suppose that is a normatively justified

reason that it is perfectly appropriate as a motivating reason for the



The Algorithmic Explainability “Bait and Switch” | 30

judge to rely upon.
76

But it turns out that while it is an appropriate

justification, it is one the judge never deploys in cases involving the

sentencing of white defendants. This would then lead to a divergent

set of sentences across racial groups that seems problematic even if in

every individual case involving a black defendant there was a post-hoc

rationalization that could be justifiably given. The discrimination may

not be evident in the one-shot case, but over time the pattern reveals

itself in the judge’s inconsistency. That is somewhat like what happens

with our MIT Law example when one explanation is given to one MIT

applicant and another to a different one.

In short: if we try to extend Cohen’s argument that sincerity

should not be a legal requirement to the algorithmic context, the most

we can establish is that a very strange kind of sincerity (one that we

would not ordinarily consider) should not be a legal requirement. But

that kind of sincerity is neither intuitively desirable nor is it

compatible with the action guiding feature of explanations of

algorithmic decisions. Meanwhile, Cohen’s argument does not

diminish the value of folk sincerity, so to speak – i.e., the kind that

requires producing motivating reasons. This is the kind of sincerity

that is crucial for action guidance.

Now it is true that in the non-algorithmic context, judges may

not always be able to produce motivating reasons – as many in the

American Legal Realist tradition have argued.
77

We may not even

have the requisite luminosity (as philosophers call it) to discern the

‘true’ reasons motivating our behavior in the first place.
78

This means

that in the ordinary (non-algorithmic) context, requiring internalist

sincerity would run afoul of the principle (associated first and

foremost with Immanuel Kant) that “Ought Implies Can”:
79

we cannot

require judges to do something that is in fact impossible for them to

do. We often tell ourselves rationalizations, convince ourselves of

simplistic stories for why we act, and engage in other irrational

79
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fully be an exaggeration. Shai Danziger, Jonathan Levav & Liora Avnaim-Pesso, Extraneous

Factors in Judicial Decisions, 108 PROC. NAT. ACAD. SCI. 6889 (2011). But see, e.g., Keren
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behavior governed by imperfect heuristics.
80

Indeed, this is why the

legal system often appears to practice a kind of externalist sincerity.

When an appellate judge reviews a trial court judge’s decision, the

appellate judge takes the trial judge’s opinion at face value and

evaluates whether it contains what Cohen would call legitimate

normative reasons. It’s entirely plausible that the judge is a closet

racist and actually decided on the basis of illegitimate motivating

reasons. But an appellate judge would look at the stated reasons. And

of course the set of stated reasons supporting a decision is not unique.

There are many rationales that the trial judge can give to justify a

particular choice. What the appellate judge looks for is whether the

reasons given are indeed legitimate. But notice that if judges could

produce motivating reasons, that would be a fantastic trait of their

written decisions, which would allow for much more effective appellate

review and for self-correction. The main problem in non-algorithmic

decision making is that we cannot require judges to do the impossible.

But what is impossible for judges is not impossible for

algorithmic decision makers. Hence, in the context of algorithms we

can demand sincerity (in the sense of producing motivating reasons)

without violating the Ought Implies Can principle.

For algorithms, motivating reasons would roughly correspond

to reasons that are not post hoc – i.e., reasons that causally connect

the model’s features to its prediction. This is also what the Canadian

bill on explainability, with which this paper began, calls “principal

factors.”
81

For example: we might say that someone is admitted to law

school if their combined LSAT and GPA score reaches a certain

threshold t on a standardized scale. This is a causal explanation

within the model – any tinkering with either the LSAT or the GPA in

a way that produces a score above the threshold will in fact lead to

admission given this model. At the risk of being unduly

anthropomorphic, we could call this an algorithm’s motivating

reasons. For interpretable algorithms, such reasons can be produced.

When it comes to algorithms, therefore, we have models that can

produce the algorithmic analogue to motivating reasons. And hence we

should use those models wherever possible. In short, there is an

epistemological problem given our own limited cognitive capacities,

which makes it difficult or impossible for us to know what our own

motivating reasons are. That is why it is reasonable to tolerate

internalist insincerity in legal decision making, as Cohen suggests.

But this limitation does not exist for AI/ML. Hence, we should not

tolerate insincerity in explanations.

D. From Insincerity to Resentment

Just adjacent to the argument we have offered here, pertaining

to sincerity and justification, is a still more philosophical question we

81
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highlight for future work: the relationship of AI/ML, explanation and

reactive attitudes. While explanations are particularly useful for

action-guiding, where we argued motivating reasons are central, they

can also play another more normative role, where motivating reasons

can be even more salient: we often want an explanation because we

are interested in answering questions about moral responsibility,

broadly construed. When we think a mistake has occurred, we want to

potentially blame someone. And indeed, when a correct decision is

made, we want to praise someone as well. As automated systems

become increasingly prevalent, they will also become the subjects of

such intentional attitudes.

In particular, as Boric Babic and Zoë Johnson King argue,
82

they can become the subject of second person “reactive” attitudes, as

P.F. Strawson calls them,
83

such as blame, praise, contempt, and

resentment. As Strawson puts it, “it matters to us, whether the

actions of other people . . . reflect attitudes towards us of goodwill,

affection, or esteem . . . or contempt, indifference, or malevolence . . .

.”
84

This is often described as the quality of will approach to moral

responsibility – we care about the quality of will others display toward

us.
85

This is where the “fool’s gold” nature of explainability algorithms,

as we have called it, might be the most fraught.

There are many situations where a decision will naturally

invite reactive attitudes among those concerned. For example, suppose

that a family member in need of an organ donation is assigned a low

rank in an allocation system for one of a limited number of kidneys,

where the assignment is based (at least in part) on a prediction of how

medically urgent a transplant would be for that patient. Now suppose

further that an explainability algorithm is used to generate an

explanation as to why this patient was deemed less medically urgent

and the explanation identifies age and gender as salient factors in the

prediction. Suppose further that the patient or a civil society group

finds it inappropriate for such decisions to be based on gender, and

wants to condemn this as a “sexist algorithm” (This is not so

far-fetched – an organ transplant related algorithm was recently

decommissioned for fear it was producing unjustified results that

disfavored black patients.
86

)

In such cases – cases that invite reactive attitudes – post hoc

explanations not only fail to provide the benefits touted of them, they

can also further undermine the legitimacy of automated systems by

presenting a narrative that seems intentional in a way that it can be

86
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1.pdf.
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the subject of blame, praise, or resentment, when in fact it is not.

Reactive attitudes require motivating reasons. In order to assess

someone’s quality of will, we need evidence of why they do what they

do – we need to know the reasons that make them act the way they do.

And indeed, even if they do the right thing but for the wrong reasons,

they could still be the subject of blame. For example, imagine an

unscrupulous doctor who intentionally recommends unnecessary

diagnostic tests to a patient in order to bill as many services as

possible. The doctor does not have evidence to believe the patient

might be sick, but unbeknownst to him, one of the tests identifies an

extremely rare and unsuspected tumor, which is then removed. We

can still blame the doctor for his unethical practices, even if in this

case he accidentally did the right thing. Meanwhile, if people do the

wrong thing for the right reasons, we might still praise them for trying

to do the right thing.
87

Sticking with the earlier example, imagine a

doctor who has strong and legitimate reasons to believe that a patient

has a certain tumor which is malignant. The doctor removes the tumor

but it turns out to be benign and the operation, in retrospect, was

unnecessary. We can still praise the doctor for acting diligently and

responding to evidence and recommending appropriate care as he

ought to. In short, the fact that post hoc explanations cannot deliver

motivating reasons means that we cannot use them as the grounds for

reactive attitudes, because reactive attitudes are particularly attuned

to evaluating an agent’s quality of will.

There are also cases that involve both action guidance and

evaluative attitudes. In such cases, post hoc explanations are most

treacherous. And as it turns out, many contexts where we wish to

apply algorithmic systems are exactly of this sort. For instance,

consider the ubiquitous case of an algorithm which produces financial

risk scores of default in order to determine whether an applicant

receives a loan or not. First, there is an action guiding component in

cases like this: a rejected applicant would like to know what she needs

to change in order to receive a loan the next time around. Second, the

situation invites reactive attitudes: if we learn that the algorithm is

mistakenly denying loans to, say, persons of color or women, at

disproportionate rates, we are likely to feel indignant and blame the

system. A post hoc explanation in this case will create a blameworthy

straw man – it will generate some reasons which are not the actual

reasons for the decision.

IV. SHOULD INTERPRETABILITY BE REQUIRED?

In the last two parts we have argued “don’t believe the hype”

about explainability. Explainable AI/ML fails both to effectively guide

action and to produce sincere explanations, and each is a problem for

the case made by its scholarly champions as well as the legislators

that want to adopt it as a legal requirement.
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By contrast, interpretable AI/ML does not produce the same

problems – it can guide action and it gives the actual reasons for a

result. The natural question then is, should policymakers require

interpretable AI/ML models? Ultimately, our view is that while such

models are desirable from a legal and political perspective, their use

should not be mandated across the board. Such a position stands to

undermine technological innovation too much. We also consider

whether some decision making contexts might require interpretable

AI/ML models more than others. Here we tentatively conclude that in

certain cases, where democratic freedoms or concerns of procedural

justice arise, a policy prohibiting opaque models may indeed be

appropriate

A. Interpretability, Action Guidance, and Accuracy

While explainable AI/ML models generate a false sense of

transparency, as we have argued, using interpretable AI/ML models

allows users to understand the motivating reasons behind a decision

and it enables them to plan accordingly. In our MIT Law example, a

simplistic interpretable model could say something like this: Every

student whose sum of their LSAT score divided by 100 and their

undergraduate GPA divided by 2 exceeds 3.5 will be admitted. This is

a very naive hypothetical rule, but the idea is that it weights an

applicant’s LSAT and GPA roughly equally, and admits every

applicant whose combined score exceeds a certain threshold, in this

case 3.5. For example, a student with a 175 LSAT and a 3.8 GPA

would have a combined score of 175/100 + 3.8/2 = 3.65. They would be

admitted. A student with a perfect GPA (4) would need an LSAT score

of at least 150 because they need to satisfy 2 + x/100 > 3.5 where x

represents their LSAT score. A student with a perfect LSAT would

need a GPA of at least 3.4 because they need to satisfy 1.8 + x/2 > 3.5.

This naive rule could be made more intelligent with just a few simple

tweaks. For example, MIT Law could add two simple conditions: Every

applicant whose combined score exceeds 3.5 will be admitted, provided

that also (1) their GPA is at least 3.7 and (2) their LSAT is at least

164.

Such a rule is very effective at guiding behavior. Every

applicant knows that if their GPA is under 3.7, or their LSAT score is

under 164, it would be a waste of their time and money to apply. They

can also compute their threshold score exactly. And if they cannot be

admitted this year, they can determine whether it is worthwhile to try

and improve their LSAT score, their GPA, or both, in order to apply

next year.

So why not always use such simple and transparent rules?

Indeed, some authors argue we should.
88

There are several arguments

given against interpretable AI/ML models. First, as the number of

input variables grows, simple interpretable rules are harder to

construct. Imagine if instead of LSAT and GPA, we had 10,000

88
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observations for each applicant (educational history, extracurricular

activities, work experience, their grade in every class taken, etc.). We

could try to use a threshold rule, but if every applicant had to plug in

10,000 values in order to determine their prospects for admission, the

rule would cease to be useful in its action guidance.

Second, it has been argued that there is a fundamental

trade-off between accuracy and interpretability, at least in some

contexts.
89

While it may be a little bit fanciful to imagine 10,000

values relevant to law school admission, that kind of high

dimensionality is the norm when it comes to image recognition or

medical forecasting based on genetic history. Indeed, image

recognition, natural language processing, and medical forecasting

models are often based on millions of input variables. And often, these

variables are not intuitively meaningful – for example, they may

represent pixel values instead of an applicant’s LSAT score. In cases

like this, it can be hard to construct an interpretable AI/ML model

which is as accurate as the most complex model that is available.

Dziugaite and colleagues articulate a mathematical argument

for the existence of a trade-off between interpretability and accuracy.
90

Increasing complexity gives a model more power and more flexibility

to approximate highly non-linear feature-label relationships. Indeed,

it is well-known that any Borel-measurable function on a

finite-dimensional feature space can be approximated arbitrarily

accurately by a simple neural network.
91

If we require an AI/ML model

to be interpretable, then we allow ourselves to use only a proper

subset of the set of all possible models. As a result, it stands to reason

that the best model in the proper subset may be worse than the best of

all models.
92

But there are also reasons to doubt the existence of a tradeoff

between accuracy and interpretability. Rudin explores many areas

where there is no apparent advantage to using black-box models. For

example, a simple three-rule model obtained by the Certifiably

Optimal Rule Lists (CORELS) algorithm attains the same accuracy as

the well-known proprietary COMPAS recidivism model on the

Broward County, Florida data.
93

Rudin argues more generally, using a

Rashomon-set
94

strategy, that when a classification task is such that

many models perform equally well on it, there likely exists one such

94
A Rashomon set is a set of models that perform similarly well on a task. Lesia Semenova,

Cynthia Rudin & Ronald Parr, On the Existence of Simpler Machine Learning Models, ARXIV

(May 12, 2022), at 2, https://arxiv.org/abs/1908.01755 (presentation at 2022 ACM Conference on

Fairness, Accountability, and Transparency). The name comes from Akira Kurosawa’s film,

Rashomon, in which multiple people describe the murder of a samurai from different

perspectives.

93
Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer & Cynthia Rudin,

Learning Certifiably Optimal Rule Lists for Categorical Data, 18 J. MACH. LEARNING RSCH., no.

234, 2018, at 1.

92
See Dziugaite et al., supra note 83, at 6.

91
Kurt Hornik, Maxwell Stinchcombe & Halbert White, Multilayer Feedforward Networks are

Universal Approximators, 2 NEURAL NETWORKS 359 (1989).

90
Id.

89
E.g., Gintare Karolina Dziugaite, Shai Ben-David & Daniel M. Roy, Enforcing Interpretability

and its Statistical Impacts: Trade-offs between Accuracy and Interpretability, ARXIV (Oct. 28,

2020), https://arxiv.org/abs/2010.13764.



The Algorithmic Explainability “Bait and Switch” | 36

AI/ML model that is interpretable.
95

The reason we observe

diminished performance is not because interpretable AI/ML models

are necessarily worse, but simply because we have not yet identified

the most accurate one for that particular task.

Third, even if we cannot prove that opaque models necessarily

perform better in some case, it can be argued that requiring AI/ML

models to be interpretable is a very intrusive policy strategy. In other

words, one might argue that a blanket policy prohibiting deep learning

models and complex neural networks is antithetical to technological

development and innovation. This libertarian argument is particularly

compelling when there is still a lot of uncertainty about which models

work best and under what types of circumstances. To prohibit

manufacturers from using the latest and most exciting algorithms, the

argument goes, would simply be too heavy handed.

As a result of the three arguments given above, we do not want

to go so far as to suggest that policy makers should require

interpretable AI/ML models. What we would like to do instead is to

shift the conversation: the default assumption should be that a simple

interpretable AI/ML model ought to be used, unless there is some

evidence that an opaque model would be more suitable. Currently, in

many applications, the default is reversed: the starting point is to

apply a deep learning model to just about any task even if the use of

such a complex model is not at all motivated.
96

B. Interpretability and Procedural Justice

Finally, even though we stop short of arguing that

interpretable AI/ML models should be required, as opposed to

explainable ones, there are some specific contexts where that policy

may be wise. For example, imagine a situation where a scarce number

of organs is allocated on the basis of an algorithm which determines

the most suitable patients for a transplant. For someone who is denied

a transplant, especially in a healthcare system that is at least in part

public, it would be eminently reasonable for that patient or his

physician to inquire on what basis a patient’s suitability was

determined: to what extent did the algorithm use comorbidities? Age?

Smoking status? Predicted longevity? Contribution to society? Income?

Marriage status? Ethnicity? Religion? These are not questions we can

answer using explainable AI/ML, for the reasons we have argued in

this project. But under interpretable AI/ML models, the actual

features used will be immediately available. And in a context like

allocation of scarce medical resources, where patients may want to

96
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appeal decisions, and where trust and democratic legitimacy are

paramount, it may be prudent to limit ourselves to interpretable

AI/ML models.

Indeed, these advantages of interpretable AI/ML may be

compelling even if there is some accuracy cost and some impediment to

technological innovation. To put it sharply, one may prefer a more

interpretable AI/ML model for organ allocation that everyone agrees

does a less “good” job in deciding which patient gets offered an organ,

as compared to the black-box model, but can do so in a way that is

more transparent. In some context, we should be willing to trade off a

little (or perhaps even a lot) of accuracy for more visibility into the

reasons given. Without purporting to map out all the contexts where

these trade-offs particularly favor interpretability, we would suggest

that a prime example of a case where this is true is the use of

algorithms in the criminal justice system.

CONCLUDING REMARKS

In this paper we have suggested that the current enthusiasm

among scholars and among policymakers for explainable AI/ML is

misplaced. While running a second algorithm to explain a black box

seems neat in theory, we have suggested two main reasons why the

explanations it offers are not the kinds of explanations worth having:

that its explanations fail to be action guiding and that they can be

insincere. At the same time, we have not argued that policymakers

should adopt a categorical rule rejecting black boxes and requiring

interpretable AI/ML. There are some instances where the benefits of a

black box might justify its usage, but we do think a strong

presumption in favor of interpretable AI/ML that must be overcome

before a black box is used might be a good background rule.

Importantly, as we have explained, there may be some contexts where

even when everyone agrees that an interpretable AI/ML will produce

less accurate or otherwise worse results, its benefits as to

transparency and procedural justice might justify favoring it.


