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Exponential and Logarithmic

Functions

The manager of the Plunket Company has noted that sales growth of
their major product line has continued, but that the amount of the increase in
sales of this line has been declining by approximately the same percentage for
several periods. He is interested in estimating future sales levels. The Depart-
ment of Health, Education, and Welfare is interested in how population
growth in certain areas will affect particular programs and needs to know the
impact of, say, a constant percentage growth rate on future population size. A
firm or government agency is concerned with the depletion of resources (say,
oil) available to it for use or sale. Another firm is concerned with the decay
of the purchase rate of a product as one factor in the decision of whether to
continue producing the product.

All of these situations and a host of other managerial decisions involve
the notions of growth and decay. Where this growth or decay is in equal
amounts per unit of, say, time for example, a linear function can be used to
represent the phenomenon. For example, if sales start at 100 units today and
increase by 5 units per month, then for any future month starting from the

present,
sales = 100 4 5x, x>0,

where x is in months and x equals O for the present month.

But quite often growth or decay is not adequately described by linear
relationships. More complex curves are necessary, and these typically involve
exponential or logarithmic functions.

We have already spent some time in Chapter 2 reviewing exponents. This
chapter begins with a review of logarithmic operations before a more practical
exploration of the growth and decay functions which they describe.
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Exponential and Logarithmic Functions 75
4-1 LOGARITHMS

In Chapter 2 we discussed the concept of an exponent and investigated
several equations involving exponents. A simple example is

32=09,

This mathematical expression can be translated as: (1) 3 multiplied by itself
gives (equals) 9; or (2) 3 squared is 9; or (3) 2 is the power to which 3 must
be raised to yield 9.

Translation (3) is the one we shall focus on here. Mathematicians write
this expression using the notation

2 = log:9

and say “the logarithm of 9 to the base 3 is 2.”” Slightly expanded, and using
statement (3), this expression becomes ‘‘the logarithm of 9 to the base 3 is the
power (exponent) needed to raise 3 to 9.” This power is, of course, 2. Hence a
logarithm is an exponent. -

Let’s try another example.

43 = 64.
In logarithmic form the exponential expression becomes
3 = 1034 64

and is phrased as “the logarithm of 64 to the base 4 is 3.”” This means that 3 is
the power that raises 4 to 64. This is a direct translation of 3 = log,64. The
correspondence is “3” in the phrase for the 3 in the mathematical expression,
“is” for =, *“the power which raises” for log, 4 for 4, and “to 64" in the
phrase for 64 in the equation.

In more general terms:
| x = logy a, |
which means that x is the power needed to raise b to a. We write
b* = qa.

A logarithm is an exponent.

Symbol English Translation
x =logya x is the exponent needed to raise b to the value a.
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Logarithm as an Inverse Function

The two equations above the symbol translation suggest the dual or
inverse relationship between equations written in logarithmic and exponential
form. For example, suppose that we are given the logarithmic equation

x = log; 81

and asked to find x. You may already know the answer, but most of us find it
simpler to understand what is going on by first converting this expression to
its exponential equivalent (or inverse form). In inverse form we obtain

3= = 8l.

We suspect that the answer, x = 4, is more easily obtained using this form.
Exponential and logarithmic functions are connected by this inverse
relationship. Given the exponential equation in general form

y=fx) = b,
we can write the inverse logarithmic equation
x = f(y) = logs y.
Note that, as has now been illustrated, we can go either way.

~ :  Write the following logarithmic equations in exponential form
and solve for x.

Exponential form Solution

1. x = log 27 X =

2. x = log; 3 X =

3 x= log;l X =

4. x = logu 0.0001 X ==

5. x = log, b* X =

6. x = log, 128 X =

7. x = lngo 0.1 X
Answers

1. 3# =27 x =3

2.3 =3 = ]

3.3 =1 x =0

4. (0.1)* = 0.0001 x =4

5. b* = b x = 2a

6. 4% = 128 x = 3.5since 128 = 4-4.4-2 = 43.4} = 4%

7. 108 = 0.1 x = —1since 107! = % = 0.1
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Logarithmic Bases

The previous section indicates that any one of a number of bases can be
used for logarithmic functions. Nevertheless, certain bases have found
particular favor. The first of these is the base 10. This base is particularly
useful in hand numerical calculation. The rules for calculations using loga-
rithms are briefly reviewed in Section 4-4. The advent of electronic computers
has made it much less necessary to make use of logarithmic hand calculations,
however. (It is interesting to recall from Section 2-3 that the electronic
computer uses a base other than 10, namely 2, for making calculations.)

The other major logarithmic base commonly found in practical applica-
tions is the mathematical constante = 2.71828.... This number arises
often enough that logarithmic tables have been computed using the constant e
as a base. Logarithms using the base e are called natural logarithms. Again, for
simplification, the mathematician uses shorthand and writes In for natural
logarithm, rather than log.. In other words, In = log..

One example of where natural logarithms arise in a managerial setting is
illustrated by the topic of compound interest which we studied in Section 2-2.
At that time we noted that $1.00 invested at an annual interest rate of r for
t years accumulates to (1 + r)*’. We saw further that if interest is compounded
semiannually, we obtain (I + (r/2))**. But suppose the compounding process
is carried to days, to hours, to seconds, and so on. Suppose the compounding
were carried to the ultimate end by compounding continuously. What would
$1.00 amount to after 7 years? The answer, which we are not sophisticated
enough to derive or even intuit, turns cout to be e .

For an example, if $10 is invested at a rate of 0.05 for 2 years, continu-
ously compounded, the amount at the end of 2 years is

1Qe2t0.08)

Using Table I at the back of the book 2% = ¢0! = ].105. Therefore, $10
invested at a rate of 0.05 yields 10(1.105) = $11.05 under continuous com-
pounding.

~~": What is the yearly advantage to a depositor of having his money
invested at a rate of 0.06 compounded continuously versus compounded
semiannually?

Answer, Compounding semiannually gives (1 + 0.03)? = (1.03)(1.03) =
1.0609. Compounding continuously gives ¢'©®%® = 9% = | (0618. The
difference is 0.0009 per dollar or 9 cents per $100. This calculation suggests
that it is advantageous to use continuous compounding to approximate the
results of daily or even weekly compounding. The approximation is sufficiently
close for all practical purposes. After all, €% is much easier to evaluate than
the precise answer to daily compounding at a 0.06 annual rate, which is given
by (1 + (0.06/365))%%,
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4-2 RULES FOR LOGARITHMS

In Section 2-1 we studied several rules for operating with exponents.
Related rules exist for logarithms. These rules can be derived using what we
already know about exponents and the inverse functional relationship
between logarithms and exponents.

Suppose that we desire the logarithm of (4)(16) to the base 2. That is, we
wish to find '

y = log, [(4)(16)].
Using the exponential inverse and the first rule of exponents we write

2v = (4)(16) = (29)(2Y)
=25,

Hence y = 6, since the base is the same. But this is the same answer we
get by writing

y = log: (4) + loga (16) = 2 + 4 = 6,

using the definition of a logarithm as the power needed to raise the base,
2 in this case, to the given number, first 4 and then 16 here. As a check,
(4)(16) = 64 = 28 We have illustrated (but not proved) that, corresponding
to the first rule for exponents, we can write the following first rule for
logarithms.

Rule | for Logarithms: PRODUCTS

The logarithm of a product is equal to the sum of the logarithms. In sym-
bolic form:

y= logb(a;-az‘ Y/ FL I -a,‘_)
= logya; + ... + logwa; + . .. + logsa.

= Z Iogba,-.
i |

Suppose that the logarithmic expression desired is
y = ]()ge (28)
Again, using the inverse relationship, we write

=2,
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Hence y = 3. But since log, (2) = 1, that s, 1 is the power necessary to raise 2
to 2, we can write

y = 3(1) = 3 log. 2.

This illustrates, but again it does not prove, the second rule for logarithms.

Rule 2 for Logarithm: POWERS

The logarithm of any term raised to a power Is equal to the power multi-
plied by the logarithm of the term. In symbolic form:

logsa™ = n loga.

Perhaps another development of this expression is useful. Again, using a
numerical example, see if you can follow the algebra. Given

8 =23,
Now taking logarithms of each side to the base 2,
log: 8 = log; (2%)
or
log.8 =3

since, on the right, 3 is, by definition, the power one must raise the base 2 to
get 23, Substituting log. 8 for 3 in the initial equation yields

8 = 2!031 8‘
Squaring both sides and then using the second rule for exponents,
83 = (21031 8)3 - 22 logs 8‘

Using the definition of a logarithm, 2 logs 8 is the power to which 2 must be
raised to give 82 Hence 2 log, 8 is the logarithm of 82 to the base 2. We write

logs 82 = 2 log, 8,

which agrees with the second rule for logarithms. The example is complete.
Consider now the logarithm of the quotient of two expressions, For
example,

y = logs(%) = logs 3) = L.
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Using rule 3 for exponents from Section 2-1, we may write
Y = logs [(27)(971)],
and using rule 1 for logarithms,
y = logs (27) + logs (97").
Now using rule 2 for logarithms,
y = logs (27) — logs (9).

Thisisequalto3 — 2, or 1, as we previously saw, and hence the manipulations
have not altered the correct answer. This example suggests rule 3 for loga-
rithms.

Rule 3 for Logarithms: QUOTIENTS

The logarithm of a quotient is equal to the logarithm of the numerator
minus the logarithm of the denominator. In symbolic form:

a
log, (;) = log,a — log,c.

A . Seeif you can answer the following.

1. log, 2) =

2. log, (39 =
3. log, (8~) =
4. logs (81''Y) =

Answers

1. The first question asks for the power needed to raise 4 to yield 2; the answer
is the } power.

2. Using the second rule for exponents, we get 0 log, 3, and zero times anything
is zero.

3. Again using rule 2 we get (—1) log: 8 = —3.

4. Working inside the parentheses, 81!/ is the fourth root of 81. This is 3.
Hence log; (81'%) = log; (3) = 1.
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4-3 GRAPHS OF LOGARITHMIC AND
EXPONENTIAL FUNCTIONS

The exponential function given by
y = b, b>1,
has the logarithmic equivalent, using the concept of inverse functions, given by
x = log, y.

This function is graphed in Figure 4-1 using the normal Cartesian axes. The
reader will note that the function can be viewed as a growth curve for non-
negative values of x. The growth is a constant percentage. For example, if
b = 2, a partial sequence (for x =0, 1,2,...)isy=2*=1,2,4,8....
This series increases by 100 percent; it doubles for each unit increase in x. A
frequently encountered member of this family of functions is where b = ¢ =
2.71828 . ... This gives the function y = e~

FIGURE 4-1
Graph of y = b* or x = log,y

A related but different growth curve is obtained by interchanging the x
and y values. This yields

or in inverse form,



82 Chapter 4

The graph of this function is given in Figure 4-2. This function is usually
relevant to managerial problems only for x > 1. Growth in this case continues
but, in contrast to that in Figure 4-1, by decreasing amounts.

FIGURE 4-2
Graphof x = b’ or y = log,x for b > |

Reading graphs and obtaining values for situations involving curves of
the type just described is often easier if the equations are transformed mathe-
matically to straight lines. In the first example, if we consider

y=b*
and take logarithms of each side to an arbitrary base, say r, we obtain
log, y = x log, b.

Since log, b is a constant, this equation will plot as a straight line through the
origin, if we plot the logarithm of y to the base r on the y axis. This is illus-
trated in Figure 4-3. The illustration assumes for simplicity that r = b = 2.
Thus the function can be written y = 2= Now if instead of plotting y, we plot
log. y, the following points appear on the graph:

X y log, y
0 1 0
1 2 1
2 4 2
3 8 3
4 16 4
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FIGURE 4-3
Graph of log;y where b = 2 and y = b’

log,y
6}

5}

Mathematicians call the graph used in Figure 4-3 a semilogarithmic
graph since the logarithms of one of the variables, y, is plotted rather than
the values of the variable itself. In this case the vertical scale was transformed.
A similar approach could be used on the horizontal scale to transform the
exponential equation x = b to a linear graph. Sometimes it is necessary to
convert both scales to logarithms to obtain a linear relationship. An example
is the equation y = x®.

Logarithmic transformations to achieve linearity are often useful in curve-
fitting problems, particularly when the data reflect exponential growth. Fit-
ting a curve to population-growth or sales-growth curves is a common example
where taking logarithms of the data may be helpful.

The actual data points may not lie on a straight line even after taking
logarithms or using some other appropriate procedure to transform the
origi~al data. If we still wish to select a single linear equation to represent the
data, then we need a technique that selects the “best” linear representation.
One means of making this selection is the method of least-squares. This
technique is discussed in statistics courses and we will not attempt a rigorous
discussion here. However, the technique is consistent with the following
six steps:

Select a line y = a + bx.

For each data point with coordinates x’, y’, solve the equation y = a + bx’.
Compute the difference y* — 7 for each data point.

Square each of these differences to obtain (y' — ).

Sum these squared differences to obtain (3’ — $).

Select that line which produces the smallest (i. e., minimizes the) sum.
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