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Plan for Today

• We’re going to jump right into a simple problem regarding an unknown
proportion of interest: The case of the curious coin.

• Reason about the problem using hypotheses testing procedures.

• Motivate the Bayesian approach, and construct a Bayesian answer to this
problem.

• In the classes to follow, we’ll slow down substantially and develop the
Bayesian approach with care.

• My hope is that while you may not follow every detail today, you will be
curious enough to learn more!

–

• In general, all slides and code notebooks will be posted to the course
website before class. I will use Jupyter notebooks.

• For today, the notebook can be found here.

• Reading: Hoff, A First Course in Bayesian Statistics (pgs. 13-35).
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Problem

A Curious Coin

You have come across a curious coin. It seems (you suspect) bent in a way
that biases it toward landing on heads. You will give this coin to your trusty
RA, and ask them to perform an experiment (i.e., toss it repeatedly) in order
to help you decide whether the coin is biased.
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Hypothesis Testing

A seemingly natural place to start would be to construct a hypothesis test
regarding the coin’s bias.

Definition

A hypothesis is a statement about a population parameter θ ∈ Ω.

In our coin case, θ is the unknown bias of the coin, and Ω = [0, 1].

Two statements about θ

• Null hypothesis: H0 : θ ∈ Ω0

• Alternative hypothesis: H1 : θ ∈ Ωc0
• Ω = Ω0 ∪ Ωc0
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Hypothesis Testing

Hypothesis testing procedure

A rule that specifies

• For which sample points H0 will be accepted as true (the subset of the
sample space for which H0 will be accepted is called the acceptance
region).

• For which sample points H0 is rejected and H1 is accepted as true (the
subset of the sample space for which H0 is rejected is called the rejection
region or critical region).

Rejection region

Rejection region (R) on a hypothesis is usually defined through a test statistic
W (X). For example,

R1 = {x : W (X) > c,x ∈ X}

R2 = {x : W (X) ≤ c,x ∈ X}
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Problem

Back to the coin. We might start as follows.

X1, X2, ..., Xn
iid∼ Bernoulli(θ) where n = (say) 12.

H0 : θ ≤ 0.5

H1 : θ > 0.5

Now we propose a hypothesis test.

Test

Reject H0 if and only if all successes are observed. That is,

R = {x : x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)}

= {x :
12∑
i=1

xi = 12}

where R is the rejection region and W (X) =
∑n
i=1 Xi.
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Properties of Proposed Test

As a statistician, there are several properties of this test that you would like to
investigate. By way of review, we will do this now.

1 Compute the power function.

2 What is the maximum probability of making a Type I error?

3 What is the probability of making a Type II error if θ = 2/3?

Notice that we do not have any data yet. Questions 1-3 can be answered
without the data!
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Question 1: Power Function

Power function

The power function of a hypothesis test with rejection region R is a function
of θ and is defined as

β(θ) = Pr(X ∈ R|θ) = Pr(rejectH0|θ)

If θ ∈ Ωc0 (alternative is true), the probability of rejecting H0 is called the
power of the test for this particular value of θ.

Question 1 asks us to compute the power function. For our test,

β(θ) = Pr(rejectH0|θ)
= Pr(X ∈ R|θ)

= Pr(
∑

Xi = 12|θ)

Since
∑
Xi ∼ Binomial(12, θ), β(θ) = θ12.
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Questions 2 and 3: Type I and II Errors

Type I error

If θ ∈ Ω0 (null hypothesis is true), the probability of making a type I error is

Pr(X ∈ R|θ)

Type II error

If θ ∈ Ωc0 (alternative hypothesis is true), the probability of making a type II
error is

Pr(X /∈ R|θ) = 1− Pr(X ∈ R|θ)

• Power = β(θ) if θ ∈ Ωc0.
• Probability of Type I error = β(θ) if θ ∈ Ω0.
• Probability of Type II error 1− β(θ) if θ ∈ Ωc0.
• Ideal test: β(θ) = 0 for all θ ∈ Ω0 (no Type I error) and β(θ) = 1 for all
θ ∈ Ωc0 (no Type II error).
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Questions 2 and 3: Type I and II Errors

Question 2 asks us to compute the maximum probability of making a Type I
error.

• When θ ∈ Ω0, the power function β(θ) is Type I error.

• For us, Ω0 = [0, 0.5]. Thus,

max
θ∈Ω0

β(θ) = max
θ∈[0,0.5]

θ12 = 0.512 = 0.0002.

• This is to be expected. Type I error is where we falsely reject the null
hypothesis.

• Since our test will only reject it if we observe all successes (heads), we
are extremely unlikely to falsely reject the hypothesis that the coin’s bias
is less than 0.5.
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Questions 2 and 3: Type I and II Errors

Question 3 asks us to compute the probability of making a Type II error if
θ = 2/3.

• When θ ∈ Ωc0, Type II error is given by 1− β(θ).

• We need only consider the case where θ = 2/3 ∈ Ωc0. Thus,

1− β(θ)|θ= 2
3

= 1− θ12|θ= 2
3

= 1− (2/3)12 = 0.99.

• This is again to be expected. Type II error is where we falsely reject the
alternative hypothesis. The alternative hypothesis is that θ > 0.5, but we
are willing to reject it only in the case where we observe all successes. If
θ were indeed equal to 2/3 this would be quite unlikely – 0.01 unlikely –
to occur.
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Finally Some Data!

A Curious Coin

Your RA reports having tossed the coin 12 times, with the following results:

H,T,H,H,H,H,H, T,H,H,H, T

9H, 3T

• Under our proposed test, we would not reject H0 : θ ≤ 0.5.

• Our rejection region was simple: reject only if we observe all heads.

• Perhaps this was a bad test after all.

• In Frequentist statistics, we search for tests that are reliable in the sense
that we can get guarantees about what would happen if we performed the
test many times (eg. Neyman-Pearson Lemma, Karlin-Rubin Theorem).

• For example, our test had a very low maximum Type I error rate.

• We could search for a better test, but is there anything else we can try?

• I know how to compute something called a p-value. Let me through!

Boris Babic, INSEAD Bayes Intro 12 / 32



Bayes Intro

Boris
Babic,
INSEAD

Overview

Problem

Hypothesis
Tests

The
Bayesian
Approach

Bayesian
Hypothesis
Tests

Credible
Intervals

A Slightly Different Approach

• Earlier, our strategy was to reject the null hypothesis if the test statistic
lies in the rejection region.

• The p-value is defined as the probability of our result, or a more extreme
result, under the null hypothesis.

• For Fisher, it was a rough and ready way to get a sense of the weight of
evidence. It has since become a rule for evaluating whether one has a
statistically significant result.

• So now, we will take a slightly different approach and identify a
significance level ex-ante, compute the p-value, and reject the null
hypothesis if the p-value is less than the level of significance.

• Conventionally, the significance level is 0.05. This gets (or used to get) a
star in the leading journals.

• So let’s try this.

• And let’s make things as simple as possible and test whether we can
reject the null hypothesis that the coin is fair.

Boris Babic, INSEAD Bayes Intro 13 / 32
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A Slightly Different Approach

X1, X2, ..., Xn
iid∼ Bernoulli(θ) where n = 12.

H0 : θ = 0.5

Recall that from our experiment,

H,T,H,H,H,H,H, T,H,H,H, T

9H, 3T

Need to compute the probability of observing our result, or a more
extreme result, under H0 : θ = 0.5.
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A Slightly Different Approach

Let Y =
∑
Xi. Then

Y ∼ Binomial(n, θ)

P (Y ≥ 9|θ = 0.5, n = 12) =

12∑
y=9

(
12

yi

)(
1

2

)yi(1

2

)12−yi

=

[(
12

3

)
+

(
12

2

)
+

(
12

1

)
+

(
12

0

)](
1

2

)12

=
299

4096
≈ 0.07

The result is not statistically significant. Again we cannot reject the
hypothesis that the coin is fair.
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An Unexpected Mixup

• After you report the results back to your RA, you learn there was a mix
up!

• You thought you told the RA to toss the coin 12 times.

• But your RA actually tossed it until observing 3 tails.

• As it happens, it took 12 tosses to get 3 tails.

• Should this matter? The evidence is what it is isn’t it?

• But now n is random and Y is fixed.

• Thus, a result more extreme than (9, 3) is no longer (10, 2), (11, 1), and
(12, 0). Rather, it is (10, 3), (11, 3), (12, 3), and so on.

• We have to re-calculate the p-value. Thoughts on how to do this?

Pr(N = n|θ, r) =

(
n− 1

r − 1

)
θr(1− θ)n−r

where r is the number of tails.
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One More Try

P (N ≥ 12|θ = 0.5, r = 3) =
∞∑

n=12

(
ni − 1

r − 1

)
.5r.5ni−r

=

∞∑
n=12

(
ni − 1

2

)
.5ni

= 1−
11∑
n=1

(
ni − 1

2

)
.5ni

≈ 0.03

Now the result is statistically significant!

What if the RA stopped tossing the coin so that they can get a coffee?

Or to watch Riverdale on Netflix?

Sometimes there are ethical reasons to stop collecting data
(HIV antiretroviral drug example)
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Bayesian Statistics

If you test positive for a certain disease...

You may want to ask

• Do I have the disease or not?

• What is the chance that I have the disease?

Possible answers

• Frequentist: I do not know. You’re asking the wrong question. Whether
you have the disease or not is not a random variable. It is a fixed value.
Therefore, the question does not make sense.

• Bayesian: The chance that you have the disease is ... % (How?)
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Bayesian Statistics

Differences from frequentist statistics

• On the Bayesian approach, the parameter θ is considered as a random
quantity.

• We describe our uncertainty about θ by a probability distribution, referred
to as the prior distribution.

• A sample is taken from a population indexed by θ, and the prior is then
updated, using Bayes’ Rule, to get a posterior distribution for θ given the
sample.

• Inferences are then made from the posterior distribution.

Bayes’ Rule

Pr(H|E) =
Pr(E|H)Pr(H)

Pr(E)
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Bayesian Framework

• Prior distribution for θ:
θ ∼ π(θ)

• Sample distribution (or likelihood) of X given θ:

X|θ ∼ f(x|θ)

• Joint distribution of X and θ:

f(x, θ) = f(x|θ)π(θ)

• Marginal distribution of X:

m(x) =

∫
θ∈Ω

f(x, θ)dθ =

∫
θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X):

π(θ|x) =
f(x, θ)

m(x)
=
f(x|θ)π(θ)

m(x)
∝ f(x|θ)π(θ) (Bayes’ Rule)
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Bayesian Approach to the Coin Problem

• In our problem, we know that the likelihood of X given θ is Bernoulli in θ:

fX(x|θ) =

n∏
i=1

{θxi(1− θ)1−xi}

• Now we need to identify a prior distribution for θ.

• A flexible prior distribution for the unknown parameter of a Bernoulli
process is a beta distribution with parameters α and β:

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

where Γ(x) is the complete Gamma function,
∫∞

0
tx−1e−tdt and for

positive integers n, Γ(n) = (n− 1)!.

• Note that ∫ 1

0

θα−1(1− θ)β−1dθ =
Γ(α)Γ(β)

Γ(α+ β)

• Note also that Γ(α+ β)/[Γ(α)Γ(β)] is not a function of θ. It is the
normalizing constant for this distribution. Often we can ignore it and
renormalize after updating.
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Bayesian Approach to the Coin Problem
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Bayesian Approach to the Coin Problem

• The posterior distribution for θ is

π(θ|x) ∝ fX(x|θ)π(θ)

=

n∏
i=1

{θxi(1− θ)1−xi} Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

∝
n∏
i=1

{θxi(1− θ)1−xi}θα−1(1− θ)β−1

= θ
∑n

i=1 xi+α−1(1− θ)n−
∑n

i=1 xi+β−1

• Using the fact from the previous slide, we know that∫ 1

0

θ
∑n

i=1 xi+α−1(1− θ)n−
∑n

i=1 xi+β−1dθ

=
Γ(
∑n
i=1 xi + α)Γ(n−

∑n
i=1 xi + β)

Γ
([∑n

i=1 xi + α
]

+
[
n−

∑n
i=1 xi + β

])
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Bayesian Approach to the Coin Problem

• Let α∗ =
∑n
i=1 xi + α. Let β∗ = n−

∑n
i=1 xi + β. Then our posterior

distribution for θ is

π(θ|x) =
Γ(α∗ + β∗)

Γ(α∗)Γ(β∗)
θα

∗−1(1− θ)β
∗−1

• In other words, the posterior distribution is still of the beta form, except
that our new α corresponds to the initial α plus the number of
successes/heads and the new β corresponds to the initial β plus the
number of failures/tails.

• This lends itself to a natural interpretation: The initial α value
corresponds to the number of pseudo tosses that came up heads, whereas
the initial β value corresponds to the number of pseudo tosses that came
up tails.

• Bayesian updating is easily accomplished by adding the pseudo heads to
the observed heads and pseudo tails to observed tails.
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Bayesian Approach to the Coin Problem

Conjugate family

Let F denote the class of distributions for f(x|θ). A class Π of prior
distributions is a conjugate family of F if the posterior distribution is the class
Π for all f ∈ F and all priors π ∈ Π, and all x ∈ X .

• What we have seen so far is that the beta distribution is conjugate to the
Bernoulli process. This is sometimes called the “beta-binomial” family.

• In the classes to follow, we will look at other commonly used conjugate
families of distributions.
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Bayesian Approach to the Coin Problem

• Now we can tackle our problem.

• The coin looked bent in a way that made it biased toward heads.

• What are reasonable values for α and β?

• Suppose α = 8 and β = 5.

• The posterior distribution is beta with α = 9 + 8 = 17 and β = 3 + 5 = 8.
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Posterior Distribution
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Inferences on θ

• Any statements that we wish to make about θ can be easily computed
from the posterior distribution.

• The posterior distribution describes all our beliefs about θ after viewing
the data.

• For example, we way want to make a point estimate using the posterior
mean.

This is given by α/(α+ β).

Before seeing the data, this was 8/(8 + 5) ≈ 0.61.

After seeing the data, this is 17/(17 + 8) ≈ 0.68.

Note that the sample mean is 0.75. The data has nudged our prior
toward a stronger belief in the coin’s bias toward heads.

• We may also want the mode, which is the value we think most likely.
This is (α− 1)/(α+ β − 2) = (17− 1)/(17 + 8− 2) ≈ 0.69.
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Bayesian Hypothesis Tests

• Recall that what we really wanted to know was a simple question: is the
coin biased toward heads?

• We used frequentist procedures to set up a hypothesis test which helps us
evaluate this. Now we can answer it directly:

Pr(θ > 0.5) =

∫ 1

0.5

π(θ|x)dθ

= 1− CDF (θ|x)|θ=0.5

= 1− 0.03

= 0.97

• R code: 1 - pbeta(0.5, 17, 8)

• We are 97% confident that the coin is biased toward heads.

• We now have an answer to a one-sided hypothesis test:

H0 : θ ≤ 0.5 H1 : θ > 0.5

• But instead of accepting/rejecting the null hypothesis, we make
probabilistic statements from the posterior distribution.

Boris Babic, INSEAD Bayes Intro 29 / 32



Bayes Intro

Boris
Babic,
INSEAD

Overview

Problem

Hypothesis
Tests

The
Bayesian
Approach

Bayesian
Hypothesis
Tests

Credible
Intervals

Bayesian Two-Sided Hypothesis Tests

• But what if we want to know whether the coin is fair or not? That is,

H0 : θ = 0.5 H1 : θ 6= 0.5

• On the picture developed so far, we cannot do this.

• The probability that θ takes on any specific value is 0. Thus the posterior
probability for any such H0 will be 0.

• We will see how to make binary decisions in the Bayesian framework once
we introduce the notions of loss and Bayes risk.
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Credible Intervals

• However, we can calculate a (1− α)100% credible interval for θ. For
example, a 95% credible interval for θ is,

Pr(a < θ < b) =

∫ b

a

π(θ|x)dθ = 0.95

• In our case, a = 0.49 and b = 0.84.

• R code: qbeta(c(0.025,0.975),17,8)

• We can also compute the probability that θ is in any desired region of the
posterior distribution. This gives us a probabilistic statement about a
small region around a point null hypothesis. For example:

Pr(0.4 < θ < 0.6) =

∫ 0.6

0.4

π(θ|x)dθ

= CDF (θ|x)|θ=0.6 − CDF (θ|x)|θ=0.4

= 0.19

• R code: pbeta(0.6, 17, 8) - pbeta(0.4, 17, 8).

• We are about 20% confident that θ is between 0.4 and 0.6.

Boris Babic, INSEAD Bayes Intro 31 / 32



Bayes Intro

Boris
Babic,
INSEAD

Overview

Problem

Hypothesis
Tests

The
Bayesian
Approach

Bayesian
Hypothesis
Tests

Credible
Intervals

Takeaway

• We can give a direct answer to most questions of interest regarding θ.

• Our inference is not sensitive to the reason our RA stopped
experimenting.

• However, it is sensitive to the choice of prior.

• In the classes to follow, we will talk more about how to identify
reasonable priors, how to construct sensible models, and how to evaluate
and refine them with use.

• See you next class!
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